| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability was found in code-projects Client Details System 1.0. This issue affects some unknown processing of the file /update-clients.php. Performing manipulation results in cross site scripting. It is possible to initiate the attack remotely. The exploit has been made public and could be used. |
| A vulnerability was determined in code-projects Client Details System 1.0. Impacted is an unknown function of the file /admin/clientview.php. Executing manipulation can lead to cross site scripting. It is possible to launch the attack remotely. The exploit has been publicly disclosed and may be utilized. |
| A vulnerability was identified in code-projects Client Details System 1.0. The affected element is an unknown function of the file /admin/manage-users.php. The manipulation leads to cross site scripting. The attack can be initiated remotely. The exploit is publicly available and might be used. |
| A vulnerability in the Edge Gateway component of Mitel MiVoice Connect through 19.3 (22.22.6100.0) could allow an authenticated attacker with internal network access to conduct a command-injection attack, due to insufficient restriction of URL parameters. |
| The Service Appliance component in Mitel MiVoice Connect through 19.2 SP3 allows remote code execution because of incorrect data validation. The Service Appliances are SA 100, SA 400, and Virtual SA. |
| In the Linux kernel, the following vulnerability has been resolved:
soc: aspeed: lpc-snoop: Don't disable channels that aren't enabled
Mitigate e.g. the following:
# echo 1e789080.lpc-snoop > /sys/bus/platform/drivers/aspeed-lpc-snoop/unbind
...
[ 120.363594] Unable to handle kernel NULL pointer dereference at virtual address 00000004 when write
[ 120.373866] [00000004] *pgd=00000000
[ 120.377910] Internal error: Oops: 805 [#1] SMP ARM
[ 120.383306] CPU: 1 UID: 0 PID: 315 Comm: sh Not tainted 6.15.0-rc1-00009-g926217bc7d7d-dirty #20 NONE
...
[ 120.679543] Call trace:
[ 120.679559] misc_deregister from aspeed_lpc_snoop_remove+0x84/0xac
[ 120.692462] aspeed_lpc_snoop_remove from platform_remove+0x28/0x38
[ 120.700996] platform_remove from device_release_driver_internal+0x188/0x200
... |
| In the Linux kernel, the following vulnerability has been resolved:
iio: accel: fxls8962af: Fix use after free in fxls8962af_fifo_flush
fxls8962af_fifo_flush() uses indio_dev->active_scan_mask (with
iio_for_each_active_channel()) without making sure the indio_dev
stays in buffer mode.
There is a race if indio_dev exits buffer mode in the middle of the
interrupt that flushes the fifo. Fix this by calling
synchronize_irq() to ensure that no interrupt is currently running when
disabling buffer mode.
Unable to handle kernel NULL pointer dereference at virtual address 00000000 when read
[...]
_find_first_bit_le from fxls8962af_fifo_flush+0x17c/0x290
fxls8962af_fifo_flush from fxls8962af_interrupt+0x80/0x178
fxls8962af_interrupt from irq_thread_fn+0x1c/0x7c
irq_thread_fn from irq_thread+0x110/0x1f4
irq_thread from kthread+0xe0/0xfc
kthread from ret_from_fork+0x14/0x2c |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: das16m1: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
/* only irqs 2, 3, 4, 5, 6, 7, 10, 11, 12, 14, and 15 are valid */
if ((1 << it->options[1]) & 0xdcfc) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: das6402: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
/* IRQs 2,3,5,6,7, 10,11,15 are valid for "enhanced" mode */
if ((1 << it->options[1]) & 0x8cec) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. Valid `it->options[1]` values that select the IRQ
will be in the range [1,15]. The value 0 explicitly disables the use of
interrupts. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: Fail COMEDI_INSNLIST ioctl if n_insns is too large
The handling of the `COMEDI_INSNLIST` ioctl allocates a kernel buffer to
hold the array of `struct comedi_insn`, getting the length from the
`n_insns` member of the `struct comedi_insnlist` supplied by the user.
The allocation will fail with a WARNING and a stack dump if it is too
large.
Avoid that by failing with an `-EINVAL` error if the supplied `n_insns`
value is unreasonable.
Define the limit on the `n_insns` value in the `MAX_INSNS` macro. Set
this to the same value as `MAX_SAMPLES` (65536), which is the maximum
allowed sum of the values of the member `n` in the array of `struct
comedi_insn`, and sensible comedi instructions will have an `n` of at
least 1. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix use of uninitialized data in insn_rw_emulate_bits()
For Comedi `INSN_READ` and `INSN_WRITE` instructions on "digital"
subdevices (subdevice types `COMEDI_SUBD_DI`, `COMEDI_SUBD_DO`, and
`COMEDI_SUBD_DIO`), it is common for the subdevice driver not to have
`insn_read` and `insn_write` handler functions, but to have an
`insn_bits` handler function for handling Comedi `INSN_BITS`
instructions. In that case, the subdevice's `insn_read` and/or
`insn_write` function handler pointers are set to point to the
`insn_rw_emulate_bits()` function by `__comedi_device_postconfig()`.
For `INSN_WRITE`, `insn_rw_emulate_bits()` currently assumes that the
supplied `data[0]` value is a valid copy from user memory. It will at
least exist because `do_insnlist_ioctl()` and `do_insn_ioctl()` in
"comedi_fops.c" ensure at lease `MIN_SAMPLES` (16) elements are
allocated. However, if `insn->n` is 0 (which is allowable for
`INSN_READ` and `INSN_WRITE` instructions, then `data[0]` may contain
uninitialized data, and certainly contains invalid data, possibly from a
different instruction in the array of instructions handled by
`do_insnlist_ioctl()`. This will result in an incorrect value being
written to the digital output channel (or to the digital input/output
channel if configured as an output), and may be reflected in the
internal saved state of the channel.
Fix it by returning 0 early if `insn->n` is 0, before reaching the code
that accesses `data[0]`. Previously, the function always returned 1 on
success, but it is supposed to be the number of data samples actually
read or written up to `insn->n`, which is 0 in this case. |
| In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix initialization of data for instructions that write to subdevice
Some Comedi subdevice instruction handlers are known to access
instruction data elements beyond the first `insn->n` elements in some
cases. The `do_insn_ioctl()` and `do_insnlist_ioctl()` functions
allocate at least `MIN_SAMPLES` (16) data elements to deal with this,
but they do not initialize all of that. For Comedi instruction codes
that write to the subdevice, the first `insn->n` data elements are
copied from user-space, but the remaining elements are left
uninitialized. That could be a problem if the subdevice instruction
handler reads the uninitialized data. Ensure that the first
`MIN_SAMPLES` elements are initialized before calling these instruction
handlers, filling the uncopied elements with 0. For
`do_insnlist_ioctl()`, the same data buffer elements are used for
handling a list of instructions, so ensure the first `MIN_SAMPLES`
elements are initialized for each instruction that writes to the
subdevice. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: sch_qfq: Fix race condition on qfq_aggregate
A race condition can occur when 'agg' is modified in qfq_change_agg
(called during qfq_enqueue) while other threads access it
concurrently. For example, qfq_dump_class may trigger a NULL
dereference, and qfq_delete_class may cause a use-after-free.
This patch addresses the issue by:
1. Moved qfq_destroy_class into the critical section.
2. Added sch_tree_lock protection to qfq_dump_class and
qfq_dump_class_stats. |
| In the Linux kernel, the following vulnerability has been resolved:
rpl: Fix use-after-free in rpl_do_srh_inline().
Running lwt_dst_cache_ref_loop.sh in selftest with KASAN triggers
the splat below [0].
rpl_do_srh_inline() fetches ipv6_hdr(skb) and accesses it after
skb_cow_head(), which is illegal as the header could be freed then.
Let's fix it by making oldhdr to a local struct instead of a pointer.
[0]:
[root@fedora net]# ./lwt_dst_cache_ref_loop.sh
...
TEST: rpl (input)
[ 57.631529] ==================================================================
BUG: KASAN: slab-use-after-free in rpl_do_srh_inline.isra.0 (net/ipv6/rpl_iptunnel.c:174)
Read of size 40 at addr ffff888122bf96d8 by task ping6/1543
CPU: 50 UID: 0 PID: 1543 Comm: ping6 Not tainted 6.16.0-rc5-01302-gfadd1e6231b1 #23 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl (lib/dump_stack.c:122)
print_report (mm/kasan/report.c:409 mm/kasan/report.c:521)
kasan_report (mm/kasan/report.c:221 mm/kasan/report.c:636)
kasan_check_range (mm/kasan/generic.c:175 (discriminator 1) mm/kasan/generic.c:189 (discriminator 1))
__asan_memmove (mm/kasan/shadow.c:94 (discriminator 2))
rpl_do_srh_inline.isra.0 (net/ipv6/rpl_iptunnel.c:174)
rpl_input (net/ipv6/rpl_iptunnel.c:201 net/ipv6/rpl_iptunnel.c:282)
lwtunnel_input (net/core/lwtunnel.c:459)
ipv6_rcv (./include/net/dst.h:471 (discriminator 1) ./include/net/dst.h:469 (discriminator 1) net/ipv6/ip6_input.c:79 (discriminator 1) ./include/linux/netfilter.h:317 (discriminator 1) ./include/linux/netfilter.h:311 (discriminator 1) net/ipv6/ip6_input.c:311 (discriminator 1))
__netif_receive_skb_one_core (net/core/dev.c:5967)
process_backlog (./include/linux/rcupdate.h:869 net/core/dev.c:6440)
__napi_poll.constprop.0 (net/core/dev.c:7452)
net_rx_action (net/core/dev.c:7518 net/core/dev.c:7643)
handle_softirqs (kernel/softirq.c:579)
do_softirq (kernel/softirq.c:480 (discriminator 20))
</IRQ>
<TASK>
__local_bh_enable_ip (kernel/softirq.c:407)
__dev_queue_xmit (net/core/dev.c:4740)
ip6_finish_output2 (./include/linux/netdevice.h:3358 ./include/net/neighbour.h:526 ./include/net/neighbour.h:540 net/ipv6/ip6_output.c:141)
ip6_finish_output (net/ipv6/ip6_output.c:215 net/ipv6/ip6_output.c:226)
ip6_output (./include/linux/netfilter.h:306 net/ipv6/ip6_output.c:248)
ip6_send_skb (net/ipv6/ip6_output.c:1983)
rawv6_sendmsg (net/ipv6/raw.c:588 net/ipv6/raw.c:918)
__sys_sendto (net/socket.c:714 (discriminator 1) net/socket.c:729 (discriminator 1) net/socket.c:2228 (discriminator 1))
__x64_sys_sendto (net/socket.c:2231)
do_syscall_64 (arch/x86/entry/syscall_64.c:63 (discriminator 1) arch/x86/entry/syscall_64.c:94 (discriminator 1))
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:130)
RIP: 0033:0x7f68cffb2a06
Code: 5d e8 41 8b 93 08 03 00 00 59 5e 48 83 f8 fc 75 19 83 e2 39 83 fa 08 75 11 e8 26 ff ff ff 66 0f 1f 44 00 00 48 8b 45 10 0f 05 <48> 8b 5d f8 c9 c3 0f 1f 40 00 f3 0f 1e fa 55 48 89 e5 48 83 ec 08
RSP: 002b:00007ffefb7c53d0 EFLAGS: 00000202 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 0000564cd69f10a0 RCX: 00007f68cffb2a06
RDX: 0000000000000040 RSI: 0000564cd69f10a4 RDI: 0000000000000003
RBP: 00007ffefb7c53f0 R08: 0000564cd6a032ac R09: 000000000000001c
R10: 0000000000000000 R11: 0000000000000202 R12: 0000564cd69f10a4
R13: 0000000000000040 R14: 00007ffefb7c66e0 R15: 0000564cd69f10a0
</TASK>
Allocated by task 1543:
kasan_save_stack (mm/kasan/common.c:48)
kasan_save_track (mm/kasan/common.c:60 (discriminator 1) mm/kasan/common.c:69 (discriminator 1))
__kasan_slab_alloc (mm/kasan/common.c:319 mm/kasan/common.c:345)
kmem_cache_alloc_node_noprof (./include/linux/kasan.h:250 mm/slub.c:4148 mm/slub.c:4197 mm/slub.c:4249)
kmalloc_reserve (net/core/skbuff.c:581 (discriminator 88))
__alloc_skb (net/core/skbuff.c:669)
__ip6_append_data (net/ipv6/ip6_output.c:1672 (discriminator 1))
ip6_
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
usb: net: sierra: check for no status endpoint
The driver checks for having three endpoints and
having bulk in and out endpoints, but not that
the third endpoint is interrupt input.
Rectify the omission. |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix null-ptr-deref in l2cap_sock_resume_cb()
syzbot reported null-ptr-deref in l2cap_sock_resume_cb(). [0]
l2cap_sock_resume_cb() has a similar problem that was fixed by commit
1bff51ea59a9 ("Bluetooth: fix use-after-free error in lock_sock_nested()").
Since both l2cap_sock_kill() and l2cap_sock_resume_cb() are executed
under l2cap_sock_resume_cb(), we can avoid the issue simply by checking
if chan->data is NULL.
Let's not access to the killed socket in l2cap_sock_resume_cb().
[0]:
BUG: KASAN: null-ptr-deref in instrument_atomic_write include/linux/instrumented.h:82 [inline]
BUG: KASAN: null-ptr-deref in clear_bit include/asm-generic/bitops/instrumented-atomic.h:41 [inline]
BUG: KASAN: null-ptr-deref in l2cap_sock_resume_cb+0xb4/0x17c net/bluetooth/l2cap_sock.c:1711
Write of size 8 at addr 0000000000000570 by task kworker/u9:0/52
CPU: 1 UID: 0 PID: 52 Comm: kworker/u9:0 Not tainted 6.16.0-rc4-syzkaller-g7482bb149b9f #0 PREEMPT
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/07/2025
Workqueue: hci0 hci_rx_work
Call trace:
show_stack+0x2c/0x3c arch/arm64/kernel/stacktrace.c:501 (C)
__dump_stack+0x30/0x40 lib/dump_stack.c:94
dump_stack_lvl+0xd8/0x12c lib/dump_stack.c:120
print_report+0x58/0x84 mm/kasan/report.c:524
kasan_report+0xb0/0x110 mm/kasan/report.c:634
check_region_inline mm/kasan/generic.c:-1 [inline]
kasan_check_range+0x264/0x2a4 mm/kasan/generic.c:189
__kasan_check_write+0x20/0x30 mm/kasan/shadow.c:37
instrument_atomic_write include/linux/instrumented.h:82 [inline]
clear_bit include/asm-generic/bitops/instrumented-atomic.h:41 [inline]
l2cap_sock_resume_cb+0xb4/0x17c net/bluetooth/l2cap_sock.c:1711
l2cap_security_cfm+0x524/0xea0 net/bluetooth/l2cap_core.c:7357
hci_auth_cfm include/net/bluetooth/hci_core.h:2092 [inline]
hci_auth_complete_evt+0x2e8/0xa4c net/bluetooth/hci_event.c:3514
hci_event_func net/bluetooth/hci_event.c:7511 [inline]
hci_event_packet+0x650/0xe9c net/bluetooth/hci_event.c:7565
hci_rx_work+0x320/0xb18 net/bluetooth/hci_core.c:4070
process_one_work+0x7e8/0x155c kernel/workqueue.c:3238
process_scheduled_works kernel/workqueue.c:3321 [inline]
worker_thread+0x958/0xed8 kernel/workqueue.c:3402
kthread+0x5fc/0x75c kernel/kthread.c:464
ret_from_fork+0x10/0x20 arch/arm64/kernel/entry.S:847 |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_conntrack: fix crash due to removal of uninitialised entry
A crash in conntrack was reported while trying to unlink the conntrack
entry from the hash bucket list:
[exception RIP: __nf_ct_delete_from_lists+172]
[..]
#7 [ff539b5a2b043aa0] nf_ct_delete at ffffffffc124d421 [nf_conntrack]
#8 [ff539b5a2b043ad0] nf_ct_gc_expired at ffffffffc124d999 [nf_conntrack]
#9 [ff539b5a2b043ae0] __nf_conntrack_find_get at ffffffffc124efbc [nf_conntrack]
[..]
The nf_conn struct is marked as allocated from slab but appears to be in
a partially initialised state:
ct hlist pointer is garbage; looks like the ct hash value
(hence crash).
ct->status is equal to IPS_CONFIRMED|IPS_DYING, which is expected
ct->timeout is 30000 (=30s), which is unexpected.
Everything else looks like normal udp conntrack entry. If we ignore
ct->status and pretend its 0, the entry matches those that are newly
allocated but not yet inserted into the hash:
- ct hlist pointers are overloaded and store/cache the raw tuple hash
- ct->timeout matches the relative time expected for a new udp flow
rather than the absolute 'jiffies' value.
If it were not for the presence of IPS_CONFIRMED,
__nf_conntrack_find_get() would have skipped the entry.
Theory is that we did hit following race:
cpu x cpu y cpu z
found entry E found entry E
E is expired <preemption>
nf_ct_delete()
return E to rcu slab
init_conntrack
E is re-inited,
ct->status set to 0
reply tuplehash hnnode.pprev
stores hash value.
cpu y found E right before it was deleted on cpu x.
E is now re-inited on cpu z. cpu y was preempted before
checking for expiry and/or confirm bit.
->refcnt set to 1
E now owned by skb
->timeout set to 30000
If cpu y were to resume now, it would observe E as
expired but would skip E due to missing CONFIRMED bit.
nf_conntrack_confirm gets called
sets: ct->status |= CONFIRMED
This is wrong: E is not yet added
to hashtable.
cpu y resumes, it observes E as expired but CONFIRMED:
<resumes>
nf_ct_expired()
-> yes (ct->timeout is 30s)
confirmed bit set.
cpu y will try to delete E from the hashtable:
nf_ct_delete() -> set DYING bit
__nf_ct_delete_from_lists
Even this scenario doesn't guarantee a crash:
cpu z still holds the table bucket lock(s) so y blocks:
wait for spinlock held by z
CONFIRMED is set but there is no
guarantee ct will be added to hash:
"chaintoolong" or "clash resolution"
logic both skip the insert step.
reply hnnode.pprev still stores the
hash value.
unlocks spinlock
return NF_DROP
<unblocks, then
crashes on hlist_nulls_del_rcu pprev>
In case CPU z does insert the entry into the hashtable, cpu y will unlink
E again right away but no crash occurs.
Without 'cpu y' race, 'garbage' hlist is of no consequence:
ct refcnt remains at 1, eventually skb will be free'd and E gets
destroyed via: nf_conntrack_put -> nf_conntrack_destroy -> nf_ct_destroy.
To resolve this, move the IPS_CONFIRMED assignment after the table
insertion but before the unlock.
Pablo points out that the confirm-bit-store could be reordered to happen
before hlist add resp. the timeout fixup, so switch to set_bit and
before_atomic memory barrier to prevent this.
It doesn't matter if other CPUs can observe a newly inserted entry right
before the CONFIRMED bit was set:
Such event cannot be distinguished from above "E is the old incarnation"
case: the entry will be skipped.
Also change nf_ct_should_gc() to first check the confirmed bit.
The gc sequence is:
1. Check if entry has expired, if not skip to next entry
2. Obtain a reference to the expired entry.
3. Call nf_ct_should_gc() to double-check step 1.
nf_ct_should_gc() is thus called only for entries that already failed an
expiry check. After this patch, once the confirmed bit check pas
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
tls: always refresh the queue when reading sock
After recent changes in net-next TCP compacts skbs much more
aggressively. This unearthed a bug in TLS where we may try
to operate on an old skb when checking if all skbs in the
queue have matching decrypt state and geometry.
BUG: KASAN: slab-use-after-free in tls_strp_check_rcv+0x898/0x9a0 [tls]
(net/tls/tls_strp.c:436 net/tls/tls_strp.c:530 net/tls/tls_strp.c:544)
Read of size 4 at addr ffff888013085750 by task tls/13529
CPU: 2 UID: 0 PID: 13529 Comm: tls Not tainted 6.16.0-rc5-virtme
Call Trace:
kasan_report+0xca/0x100
tls_strp_check_rcv+0x898/0x9a0 [tls]
tls_rx_rec_wait+0x2c9/0x8d0 [tls]
tls_sw_recvmsg+0x40f/0x1aa0 [tls]
inet_recvmsg+0x1c3/0x1f0
Always reload the queue, fast path is to have the record in the queue
when we wake, anyway (IOW the path going down "if !strp->stm.full_len"). |
| In the Linux kernel, the following vulnerability has been resolved:
net: vlan: fix VLAN 0 refcount imbalance of toggling filtering during runtime
Assuming the "rx-vlan-filter" feature is enabled on a net device, the
8021q module will automatically add or remove VLAN 0 when the net device
is put administratively up or down, respectively. There are a couple of
problems with the above scheme.
The first problem is a memory leak that can happen if the "rx-vlan-filter"
feature is disabled while the device is running:
# ip link add bond1 up type bond mode 0
# ethtool -K bond1 rx-vlan-filter off
# ip link del dev bond1
When the device is put administratively down the "rx-vlan-filter"
feature is disabled, so the 8021q module will not remove VLAN 0 and the
memory will be leaked [1].
Another problem that can happen is that the kernel can automatically
delete VLAN 0 when the device is put administratively down despite not
adding it when the device was put administratively up since during that
time the "rx-vlan-filter" feature was disabled. null-ptr-unref or
bug_on[2] will be triggered by unregister_vlan_dev() for refcount
imbalance if toggling filtering during runtime:
$ ip link add bond0 type bond mode 0
$ ip link add link bond0 name vlan0 type vlan id 0 protocol 802.1q
$ ethtool -K bond0 rx-vlan-filter off
$ ifconfig bond0 up
$ ethtool -K bond0 rx-vlan-filter on
$ ifconfig bond0 down
$ ip link del vlan0
Root cause is as below:
step1: add vlan0 for real_dev, such as bond, team.
register_vlan_dev
vlan_vid_add(real_dev,htons(ETH_P_8021Q),0) //refcnt=1
step2: disable vlan filter feature and enable real_dev
step3: change filter from 0 to 1
vlan_device_event
vlan_filter_push_vids
ndo_vlan_rx_add_vid //No refcnt added to real_dev vlan0
step4: real_dev down
vlan_device_event
vlan_vid_del(dev, htons(ETH_P_8021Q), 0); //refcnt=0
vlan_info_rcu_free //free vlan0
step5: delete vlan0
unregister_vlan_dev
BUG_ON(!vlan_info); //vlan_info is null
Fix both problems by noting in the VLAN info whether VLAN 0 was
automatically added upon NETDEV_UP and based on that decide whether it
should be deleted upon NETDEV_DOWN, regardless of the state of the
"rx-vlan-filter" feature.
[1]
unreferenced object 0xffff8880068e3100 (size 256):
comm "ip", pid 384, jiffies 4296130254
hex dump (first 32 bytes):
00 20 30 0d 80 88 ff ff 00 00 00 00 00 00 00 00 . 0.............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 81ce31fa):
__kmalloc_cache_noprof+0x2b5/0x340
vlan_vid_add+0x434/0x940
vlan_device_event.cold+0x75/0xa8
notifier_call_chain+0xca/0x150
__dev_notify_flags+0xe3/0x250
rtnl_configure_link+0x193/0x260
rtnl_newlink_create+0x383/0x8e0
__rtnl_newlink+0x22c/0xa40
rtnl_newlink+0x627/0xb00
rtnetlink_rcv_msg+0x6fb/0xb70
netlink_rcv_skb+0x11f/0x350
netlink_unicast+0x426/0x710
netlink_sendmsg+0x75a/0xc20
__sock_sendmsg+0xc1/0x150
____sys_sendmsg+0x5aa/0x7b0
___sys_sendmsg+0xfc/0x180
[2]
kernel BUG at net/8021q/vlan.c:99!
Oops: invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 0 UID: 0 PID: 382 Comm: ip Not tainted 6.16.0-rc3 #61 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:unregister_vlan_dev (net/8021q/vlan.c:99 (discriminator 1))
RSP: 0018:ffff88810badf310 EFLAGS: 00010246
RAX: 0000000000000000 RBX: ffff88810da84000 RCX: ffffffffb47ceb9a
RDX: dffffc0000000000 RSI: 0000000000000008 RDI: ffff88810e8b43c8
RBP: 0000000000000000 R08: 0000000000000000 R09: fffffbfff6cefe80
R10: ffffffffb677f407 R11: ffff88810badf3c0 R12: ffff88810e8b4000
R13: 0000000000000000 R14: ffff88810642a5c0 R15: 000000000000017e
FS: 00007f1ff68c20c0(0000) GS:ffff888163a24000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f1ff5dad240 CR3: 0000000107e56000 CR4: 00000000000006f0
Call Trace:
<TASK
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: Return NULL when htb_lookup_leaf encounters an empty rbtree
htb_lookup_leaf has a BUG_ON that can trigger with the following:
tc qdisc del dev lo root
tc qdisc add dev lo root handle 1: htb default 1
tc class add dev lo parent 1: classid 1:1 htb rate 64bit
tc qdisc add dev lo parent 1:1 handle 2: netem
tc qdisc add dev lo parent 2:1 handle 3: blackhole
ping -I lo -c1 -W0.001 127.0.0.1
The root cause is the following:
1. htb_dequeue calls htb_dequeue_tree which calls the dequeue handler on
the selected leaf qdisc
2. netem_dequeue calls enqueue on the child qdisc
3. blackhole_enqueue drops the packet and returns a value that is not
just NET_XMIT_SUCCESS
4. Because of this, netem_dequeue calls qdisc_tree_reduce_backlog, and
since qlen is now 0, it calls htb_qlen_notify -> htb_deactivate ->
htb_deactiviate_prios -> htb_remove_class_from_row -> htb_safe_rb_erase
5. As this is the only class in the selected hprio rbtree,
__rb_change_child in __rb_erase_augmented sets the rb_root pointer to
NULL
6. Because blackhole_dequeue returns NULL, netem_dequeue returns NULL,
which causes htb_dequeue_tree to call htb_lookup_leaf with the same
hprio rbtree, and fail the BUG_ON
The function graph for this scenario is shown here:
0) | htb_enqueue() {
0) + 13.635 us | netem_enqueue();
0) 4.719 us | htb_activate_prios();
0) # 2249.199 us | }
0) | htb_dequeue() {
0) 2.355 us | htb_lookup_leaf();
0) | netem_dequeue() {
0) + 11.061 us | blackhole_enqueue();
0) | qdisc_tree_reduce_backlog() {
0) | qdisc_lookup_rcu() {
0) 1.873 us | qdisc_match_from_root();
0) 6.292 us | }
0) 1.894 us | htb_search();
0) | htb_qlen_notify() {
0) 2.655 us | htb_deactivate_prios();
0) 6.933 us | }
0) + 25.227 us | }
0) 1.983 us | blackhole_dequeue();
0) + 86.553 us | }
0) # 2932.761 us | qdisc_warn_nonwc();
0) | htb_lookup_leaf() {
0) | BUG_ON();
------------------------------------------
The full original bug report can be seen here [1].
We can fix this just by returning NULL instead of the BUG_ON,
as htb_dequeue_tree returns NULL when htb_lookup_leaf returns
NULL.
[1] https://lore.kernel.org/netdev/pF5XOOIim0IuEfhI-SOxTgRvNoDwuux7UHKnE_Y5-zVd4wmGvNk2ceHjKb8ORnzw0cGwfmVu42g9dL7XyJLf1NEzaztboTWcm0Ogxuojoeo=@willsroot.io/ |