A vulnerability, which was classified as critical, has been found in PCMan FTP Server 2.0.7. This issue affects some unknown processing of the component SMNT Command Handler. The manipulation leads to buffer overflow. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. |
A vulnerability classified as critical was found in PCMan FTP Server 2.0.7. This vulnerability affects unknown code of the component RNTO Command Handler. The manipulation leads to buffer overflow. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. |
A vulnerability classified as critical has been found in PCMan FTP Server 2.0.7. This affects an unknown part of the component RNFR Command Handler. The manipulation leads to buffer overflow. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. |
IBM Db2 for Linux, UNIX and Windows (includes DB2 Connect Server) 12.1.0 through 12.1.1
could allow an authenticated user to cause a denial of service due to concurrent execution of shared resources. |
IBM Db2 for Linux, UNIX and Windows (includes DB2 Connect Server) 11.5.0 through 11.5.9 and 12.1.0 through 12.1.1
could allow an authenticated user to cause a denial of service when connecting to a z/OS database due to improper handling of automatic client rerouting. |
IBM Db2 for Linux, UNIX and Windows (includes DB2 Connect Server) 11.5.0 through 11.5.9 and 12.1.0 through 12.1.1
under specific configurations could allow an authenticated user to cause a denial of service due to insufficient release of allocated memory resources. |
An off-by-one read/write issue was found in the SDHCI device of QEMU. It occurs when reading/writing the Buffer Data Port Register in sdhci_read_dataport and sdhci_write_dataport, respectively, if data_count == block_size. A malicious guest could use this flaw to crash the QEMU process on the host, resulting in a denial of service condition. |
The Import any XML or CSV File to WordPress plugin before 3.6.9 is not validating the paths of files contained in uploaded zip archives, allowing highly privileged users, such as admins, to write arbitrary files to any part of the file system accessible by the web server via a path traversal vector. |
The Easy Digital Downloads WordPress plugin before 3.0 does not have CSRF check in place when deleting payment history, and does not ensure that the post to be deleted is actually a payment history. As a result, attackers could make a logged in admin delete arbitrary post via a CSRF attack |
Possible path traversal in Apache OFBiz allowing authentication bypass.
Users are recommended to upgrade to version 18.12.12, that fixes the issue. |
Apache James prior to versions 3.8.1 and 3.7.5 is vulnerable to SMTP smuggling.
A lenient behaviour in line delimiter handling might create a difference of interpretation between the sender and the receiver which can be exploited by an attacker to forge an SMTP envelop, allowing for instance to bypass SPF checks.
The patch implies enforcement of CRLF as a line delimiter as part of the DATA transaction.
We recommend James users to upgrade to non vulnerable versions. |
Apache James prior to version 3.7.5 and 3.8.0 exposes a JMX endpoint on localhost subject to pre-authentication deserialisation of untrusted data.
Given a deserialisation gadjet, this could be leveraged as part of an exploit chain that could result in privilege escalation.
Note that by default JMX endpoint is only bound locally.
We recommend users to:
- Upgrade to a non-vulnerable Apache James version
- Run Apache James isolated from other processes (docker - dedicated virtual machine)
- If possible turn off JMX
|
Malicious code injection in Apache Ambari in prior to 2.7.8. Users are recommended to upgrade to version 2.7.8, which fixes this issue.
Impact:
A Cluster Operator can manipulate the request by adding a malicious code injection and gain a root over the cluster main host. |
Unrestricted Upload of File with Dangerous Type vulnerability in Apache Answer.This issue affects Apache Answer: through 1.2.1.
Pixel Flood Attack by uploading large pixel files will cause server out of memory. A logged-in user can cause such an attack by uploading an image when posting content.
Users are recommended to upgrade to version [1.2.5], which fixes the issue. |
In the Linux kernel, the following vulnerability has been resolved:
KVM: VMX: Reset eVMCS controls in VP assist page during hardware disabling
Reset the eVMCS controls in the per-CPU VP assist page during hardware
disabling instead of waiting until kvm-intel's module exit. The controls
are activated if and only if KVM creates a VM, i.e. don't need to be
reset if hardware is never enabled.
Doing the reset during hardware disabling will naturally fix a potential
NULL pointer deref bug once KVM disables CPU hotplug while enabling and
disabling hardware (which is necessary to fix a variety of bugs). If the
kernel is running as the root partition, the VP assist page is unmapped
during CPU hot unplug, and so KVM's clearing of the eVMCS controls needs
to occur with CPU hot(un)plug disabled, otherwise KVM could attempt to
write to a CPU's VP assist page after it's unmapped. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix cleanup null-ptr deref on encap lock
During module is unloaded while a peer tc flow is still offloaded,
first the peer uplink rep profile is changed to a nic profile, and so
neigh encap lock is destroyed. Next during unload, the VF reps netdevs
are unregistered which causes the original non-peer tc flow to be deleted,
which deletes the peer flow. The peer flow deletion detaches the encap
entry and try to take the already destroyed encap lock, causing the
below trace.
Fix this by clearing peer flows during tc eswitch cleanup
(mlx5e_tc_esw_cleanup()).
Relevant trace:
[ 4316.837128] BUG: kernel NULL pointer dereference, address: 00000000000001d8
[ 4316.842239] RIP: 0010:__mutex_lock+0xb5/0xc40
[ 4316.851897] Call Trace:
[ 4316.852481] <TASK>
[ 4316.857214] mlx5e_rep_neigh_entry_release+0x93/0x790 [mlx5_core]
[ 4316.858258] mlx5e_rep_encap_entry_detach+0xa7/0xf0 [mlx5_core]
[ 4316.859134] mlx5e_encap_dealloc+0xa3/0xf0 [mlx5_core]
[ 4316.859867] clean_encap_dests.part.0+0x5c/0xe0 [mlx5_core]
[ 4316.860605] mlx5e_tc_del_fdb_flow+0x32a/0x810 [mlx5_core]
[ 4316.862609] __mlx5e_tc_del_fdb_peer_flow+0x1a2/0x250 [mlx5_core]
[ 4316.863394] mlx5e_tc_del_flow+0x(/0x630 [mlx5_core]
[ 4316.864090] mlx5e_flow_put+0x5f/0x100 [mlx5_core]
[ 4316.864771] mlx5e_delete_flower+0x4de/0xa40 [mlx5_core]
[ 4316.865486] tc_setup_cb_reoffload+0x20/0x80
[ 4316.865905] fl_reoffload+0x47c/0x510 [cls_flower]
[ 4316.869181] tcf_block_playback_offloads+0x91/0x1d0
[ 4316.869649] tcf_block_unbind+0xe7/0x1b0
[ 4316.870049] tcf_block_offload_cmd.isra.0+0x1ee/0x270
[ 4316.879266] tcf_block_offload_unbind+0x61/0xa0
[ 4316.879711] __tcf_block_put+0xa4/0x310 |
In the Linux kernel, the following vulnerability has been resolved:
ftrace: Fix invalid address access in lookup_rec() when index is 0
KASAN reported follow problem:
BUG: KASAN: use-after-free in lookup_rec
Read of size 8 at addr ffff000199270ff0 by task modprobe
CPU: 2 Comm: modprobe
Call trace:
kasan_report
__asan_load8
lookup_rec
ftrace_location
arch_check_ftrace_location
check_kprobe_address_safe
register_kprobe
When checking pg->records[pg->index - 1].ip in lookup_rec(), it can get a
pg which is newly added to ftrace_pages_start in ftrace_process_locs().
Before the first pg->index++, index is 0 and accessing pg->records[-1].ip
will cause this problem.
Don't check the ip when pg->index is 0. |
In the Linux kernel, the following vulnerability has been resolved:
perf/core: Fix perf_output_begin parameter is incorrectly invoked in perf_event_bpf_output
syzkaller reportes a KASAN issue with stack-out-of-bounds.
The call trace is as follows:
dump_stack+0x9c/0xd3
print_address_description.constprop.0+0x19/0x170
__kasan_report.cold+0x6c/0x84
kasan_report+0x3a/0x50
__perf_event_header__init_id+0x34/0x290
perf_event_header__init_id+0x48/0x60
perf_output_begin+0x4a4/0x560
perf_event_bpf_output+0x161/0x1e0
perf_iterate_sb_cpu+0x29e/0x340
perf_iterate_sb+0x4c/0xc0
perf_event_bpf_event+0x194/0x2c0
__bpf_prog_put.constprop.0+0x55/0xf0
__cls_bpf_delete_prog+0xea/0x120 [cls_bpf]
cls_bpf_delete_prog_work+0x1c/0x30 [cls_bpf]
process_one_work+0x3c2/0x730
worker_thread+0x93/0x650
kthread+0x1b8/0x210
ret_from_fork+0x1f/0x30
commit 267fb27352b6 ("perf: Reduce stack usage of perf_output_begin()")
use on-stack struct perf_sample_data of the caller function.
However, perf_event_bpf_output uses incorrect parameter to convert
small-sized data (struct perf_bpf_event) into large-sized data
(struct perf_sample_data), which causes memory overwriting occurs in
__perf_event_header__init_id. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix race condition in hci_cmd_sync_clear
There is a potential race condition in hci_cmd_sync_work and
hci_cmd_sync_clear, and could lead to use-after-free. For instance,
hci_cmd_sync_work is added to the 'req_workqueue' after cancel_work_sync
The entry of 'cmd_sync_work_list' may be freed in hci_cmd_sync_clear, and
causing kernel panic when it is used in 'hci_cmd_sync_work'.
Here's the call trace:
dump_stack_lvl+0x49/0x63
print_report.cold+0x5e/0x5d3
? hci_cmd_sync_work+0x282/0x320
kasan_report+0xaa/0x120
? hci_cmd_sync_work+0x282/0x320
__asan_report_load8_noabort+0x14/0x20
hci_cmd_sync_work+0x282/0x320
process_one_work+0x77b/0x11c0
? _raw_spin_lock_irq+0x8e/0xf0
worker_thread+0x544/0x1180
? poll_idle+0x1e0/0x1e0
kthread+0x285/0x320
? process_one_work+0x11c0/0x11c0
? kthread_complete_and_exit+0x30/0x30
ret_from_fork+0x22/0x30
</TASK>
Allocated by task 266:
kasan_save_stack+0x26/0x50
__kasan_kmalloc+0xae/0xe0
kmem_cache_alloc_trace+0x191/0x350
hci_cmd_sync_queue+0x97/0x2b0
hci_update_passive_scan+0x176/0x1d0
le_conn_complete_evt+0x1b5/0x1a00
hci_le_conn_complete_evt+0x234/0x340
hci_le_meta_evt+0x231/0x4e0
hci_event_packet+0x4c5/0xf00
hci_rx_work+0x37d/0x880
process_one_work+0x77b/0x11c0
worker_thread+0x544/0x1180
kthread+0x285/0x320
ret_from_fork+0x22/0x30
Freed by task 269:
kasan_save_stack+0x26/0x50
kasan_set_track+0x25/0x40
kasan_set_free_info+0x24/0x40
____kasan_slab_free+0x176/0x1c0
__kasan_slab_free+0x12/0x20
slab_free_freelist_hook+0x95/0x1a0
kfree+0xba/0x2f0
hci_cmd_sync_clear+0x14c/0x210
hci_unregister_dev+0xff/0x440
vhci_release+0x7b/0xf0
__fput+0x1f3/0x970
____fput+0xe/0x20
task_work_run+0xd4/0x160
do_exit+0x8b0/0x22a0
do_group_exit+0xba/0x2a0
get_signal+0x1e4a/0x25b0
arch_do_signal_or_restart+0x93/0x1f80
exit_to_user_mode_prepare+0xf5/0x1a0
syscall_exit_to_user_mode+0x26/0x50
ret_from_fork+0x15/0x30 |
In the Linux kernel, the following vulnerability has been resolved:
net/iucv: Fix size of interrupt data
iucv_irq_data needs to be 4 bytes larger.
These bytes are not used by the iucv module, but written by
the z/VM hypervisor in case a CPU is deconfigured.
Reported as:
BUG dma-kmalloc-64 (Not tainted): kmalloc Redzone overwritten
-----------------------------------------------------------------------------
0x0000000000400564-0x0000000000400567 @offset=1380. First byte 0x80 instead of 0xcc
Allocated in iucv_cpu_prepare+0x44/0xd0 age=167839 cpu=2 pid=1
__kmem_cache_alloc_node+0x166/0x450
kmalloc_node_trace+0x3a/0x70
iucv_cpu_prepare+0x44/0xd0
cpuhp_invoke_callback+0x156/0x2f0
cpuhp_issue_call+0xf0/0x298
__cpuhp_setup_state_cpuslocked+0x136/0x338
__cpuhp_setup_state+0xf4/0x288
iucv_init+0xf4/0x280
do_one_initcall+0x78/0x390
do_initcalls+0x11a/0x140
kernel_init_freeable+0x25e/0x2a0
kernel_init+0x2e/0x170
__ret_from_fork+0x3c/0x58
ret_from_fork+0xa/0x40
Freed in iucv_init+0x92/0x280 age=167839 cpu=2 pid=1
__kmem_cache_free+0x308/0x358
iucv_init+0x92/0x280
do_one_initcall+0x78/0x390
do_initcalls+0x11a/0x140
kernel_init_freeable+0x25e/0x2a0
kernel_init+0x2e/0x170
__ret_from_fork+0x3c/0x58
ret_from_fork+0xa/0x40
Slab 0x0000037200010000 objects=32 used=30 fp=0x0000000000400640 flags=0x1ffff00000010200(slab|head|node=0|zone=0|
Object 0x0000000000400540 @offset=1344 fp=0x0000000000000000
Redzone 0000000000400500: cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc ................
Redzone 0000000000400510: cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc ................
Redzone 0000000000400520: cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc ................
Redzone 0000000000400530: cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc ................
Object 0000000000400540: 00 01 00 03 00 00 00 00 00 00 00 00 00 00 00 00 ................
Object 0000000000400550: f3 86 81 f2 f4 82 f8 82 f0 f0 f0 f0 f0 f0 f0 f2 ................
Object 0000000000400560: 00 00 00 00 80 00 00 00 cc cc cc cc cc cc cc cc ................
Object 0000000000400570: cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc cc ................
Redzone 0000000000400580: cc cc cc cc cc cc cc cc ........
Padding 00000000004005d4: 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZZZZZZZZZ
Padding 00000000004005e4: 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZZZZZZZZZ
Padding 00000000004005f4: 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a 5a ZZZZZZZZZZZZ
CPU: 6 PID: 121030 Comm: 116-pai-crypto. Not tainted 6.3.0-20230221.rc0.git4.99b8246b2d71.300.fc37.s390x+debug #1
Hardware name: IBM 3931 A01 704 (z/VM 7.3.0)
Call Trace:
[<000000032aa034ec>] dump_stack_lvl+0xac/0x100
[<0000000329f5a6cc>] check_bytes_and_report+0x104/0x140
[<0000000329f5aa78>] check_object+0x370/0x3c0
[<0000000329f5ede6>] free_debug_processing+0x15e/0x348
[<0000000329f5f06a>] free_to_partial_list+0x9a/0x2f0
[<0000000329f5f4a4>] __slab_free+0x1e4/0x3a8
[<0000000329f61768>] __kmem_cache_free+0x308/0x358
[<000000032a91465c>] iucv_cpu_dead+0x6c/0x88
[<0000000329c2fc66>] cpuhp_invoke_callback+0x156/0x2f0
[<000000032aa062da>] _cpu_down.constprop.0+0x22a/0x5e0
[<0000000329c3243e>] cpu_device_down+0x4e/0x78
[<000000032a61dee0>] device_offline+0xc8/0x118
[<000000032a61e048>] online_store+0x60/0xe0
[<000000032a08b6b0>] kernfs_fop_write_iter+0x150/0x1e8
[<0000000329fab65c>] vfs_write+0x174/0x360
[<0000000329fab9fc>] ksys_write+0x74/0x100
[<000000032aa03a5a>] __do_syscall+0x1da/0x208
[<000000032aa177b2>] system_call+0x82/0xb0
INFO: lockdep is turned off.
FIX dma-kmalloc-64: Restoring kmalloc Redzone 0x0000000000400564-0x0000000000400567=0xcc
FIX dma-kmalloc-64: Object at 0x0000000000400540 not freed |