| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| iccDEV provides libraries and tools for interacting with, manipulating, and applying ICC color management profiles. In versions 2.3.1.1 and below, an integer overflow vulnerability exists in icValidateStatus CIccProfile::CheckHeader() when user-controllable input is incorporated into profile data unsafely. Tampering with tag tables, offsets, or size fields can trigger parsing errors, memory corruption, or DoS, potentially enabling arbitrary Code Execution or bypassing application logic. This issue has been fixed in version 2.3.1.2. |
| In libexpat before 2.7.4, the doContent function does not properly determine the buffer size bufSize because there is no integer overflow check for tag buffer reallocation. |
| The read command is used to read the keyboard input from the user, while reads it keeps the input length in a 32-bit integer value which is further used to reallocate the line buffer to accept the next character. During this process, with a line big enough it's possible to make this variable to overflow leading to a out-of-bounds write in the heap based buffer. This flaw may be leveraged to corrupt grub's internal critical data and secure boot bypass is not discarded as consequence. |
| soroban-sdk is a Rust SDK for Soroban contracts. Arithmetic overflow can be triggered in the `Bytes::slice`, `Vec::slice`, and `Prng::gen_range` (for `u64`) methods in the `soroban-sdk` in versions up to and including `25.0.1`, `23.5.1`, and `25.0.2`. Contracts that pass user-controlled or computed range bounds to `Bytes::slice`, `Vec::slice`, or `Prng::gen_range` may silently operate on incorrect data ranges or generate random numbers from an unintended range, potentially resulting in corrupted contract state. Note that the best practice when using the `soroban-sdk` and building Soroban contracts is to always enable `overflow-checks = true`. The `stellar contract init` tool that prepares the boiler plate for a Soroban contract, as well as all examples and docs, encourage the use of configuring `overflow-checks = true` on `release` profiles so that these arithmetic operations fail rather than silently wrap. Contracts are only impacted if they use `overflow-checks = false` either explicitly or implicitly. It is anticipated the majority of contracts could not be impacted because the best practice encouraged by tooling is to enable `overflow-checks`. The fix available in `25.0.1`, `23.5.1`, and `25.0.2` replaces bare arithmetic with `checked_add` / `checked_sub`, ensuring overflow traps regardless of the `overflow-checks` profile setting. As a workaround, contract workspaces can be configured with a profile available in the GitHub Securtity Advisory to enable overflow checks on the arithmetic operations. This is the best practice when developing Soroban contracts, and the default if using the contract boilerplate generated using `stellar contract init`. Alternatively, contracts can validate range bounds before passing them to `slice` or `gen_range` to ensure the conversions cannot overflow. |
| Integer Overflow or Wraparound vulnerability in yoyofr modizer.This issue affects modizer: before 4.1.1. |
| NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer (nvlddmkm.sys), where an attacker could cause an integer overflow. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, data tampering, denial of service, or information disclosure. |
| NVIDIA Display Driver for Linux contains a vulnerability in the NVIDIA kernel module where an attacker could cause an integer overflow or wraparound. A successful exploit of this vulnerability might lead to code execution, escalation of privileges, data tampering, denial of service, or information disclosure. |
| ImageMagick is free and open-source software used for editing and manipulating digital images. Prior to versions 7.1.2-13 and 6.9.13-38, a heap buffer overflow vulnerability in the XBM image decoder (ReadXBMImage) allows an attacker to write controlled data past the allocated heap buffer when processing a maliciously crafted image file. Any operation that reads or identifies an image can trigger the overflow, making it exploitable via common image upload and processing pipelines. Versions 7.1.2-13 and 6.9.13-38 fix the issue. |
| Memory corruption while routing GPR packets between user and root when handling large data packet. |
| A heap-based buffer overflow problem was found in glib through an incorrect calculation of buffer size in the g_escape_uri_string() function. If the string to escape contains a very large number of unacceptable characters (which would need escaping), the calculation of the length of the escaped string could overflow, leading to a potential write off the end of the newly allocated string. |
| Integer Overflow or Wraparound vulnerability in MuntashirAkon AppManager (app/src/main/java/org/apache/commons/compress/archivers/tar modules). This vulnerability is associated with program files TarUtils.Java.
This issue affects AppManager: before 4.0.4. |
| Integer Overflow or Wraparound vulnerability in RawTherapee (rtengine modules). This vulnerability is associated with program files dcraw.Cc.
This issue affects RawTherapee: through 5.11. |
| Integer Overflow or Wraparound vulnerability in swoole swoole-src (thirdparty/hiredis modules). This vulnerability is associated with program files sds.C.
This issue affects swoole-src: before 6.0.2. |
| Integer Overflow or Wraparound vulnerability in Ralim IronOS.This issue affects IronOS: before v2.23-rc2. |
| A low privileged remote attacker can execute arbitrary code by sending specially crafted calls to the web service of the Device Manager or locally via an API and can cause integer overflows which then may lead to arbitrary code execution within privileged processes. |
| Redis is an open source, in-memory database that persists on disk. Versions 8.2.1 and below allow an authenticated user to use a specially crafted LUA script to read out-of-bound data or crash the server and subsequent denial of service. The problem exists in all versions of Redis with Lua scripting. This issue is fixed in version 8.2.2. To workaround this issue without patching the redis-server executable is to prevent users from executing Lua scripts. This can be done using ACL to block a script by restricting both the EVAL and FUNCTION command families. |
| Redis is an open source, in-memory database that persists on disk. Versions 8.2.1 and below allow an authenticated user to use a specially crafted Lua script to cause an integer overflow and potentially lead to remote code execution The problem exists in all versions of Redis with Lua scripting. This issue is fixed in version 8.2.2. |
| A flaw was found in GLib. An integer overflow vulnerability in its Unicode case conversion implementation can lead to memory corruption. By processing specially crafted and extremely large Unicode strings, an attacker could trigger an undersized memory allocation, resulting in out-of-bounds writes. This could cause applications utilizing GLib for string conversion to crash or become unstable. |
| An integer overflow flaw was found in the Linux kernel's create_elf_tables() function. An unprivileged local user with access to SUID (or otherwise privileged) binary could use this flaw to escalate their privileges on the system. Kernel versions 2.6.x, 3.10.x and 4.14.x are believed to be vulnerable. |
| A flaw was found in the GLib Base64 encoding routine when processing very large input data. Due to incorrect use of integer types during length calculation, the library may miscalculate buffer boundaries. This can cause memory writes outside the allocated buffer. Applications that process untrusted or extremely large Base64 input using GLib may crash or behave unpredictably. |