| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The Fancy Product Designer plugin for WordPress is vulnerable to Server-Side Request Forgery in all versions up to, and including, 6.4.8. This is due to a time-of-check/time-of-use (TOCTOU) race condition in the 'url' parameter of the fpd_custom_uplod_file AJAX action. The plugin validates the URL by calling getimagesize() first, then later retrieves the same URL using file_get_contents(). This makes it possible for unauthenticated attackers to exploit the timing gap to perform SSRF attacks by serving a valid image during validation, then changing the response to redirect to arbitrary internal or external URLs during the actual fetch. |
| NVIDIA Resiliency Extension for Linux contains a vulnerability in the checkpointing core, where an attacker may cause a race condition. A successful exploit of this vulnerability might lead to information disclosure, data tampering, denial of service, or escalation of privileges. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: wdm: close race between wdm_open and wdm_wwan_port_stop
Clearing WDM_WWAN_IN_USE must be the last action or
we can open a chardev whose URBs are still poisoned |
| filelock is a platform-independent file lock for Python. In versions prior to 3.20.1, a Time-of-Check-Time-of-Use (TOCTOU) race condition allows local attackers to corrupt or truncate arbitrary user files through symlink attacks. The vulnerability exists in both Unix and Windows lock file creation where filelock checks if a file exists before opening it with O_TRUNC. An attacker can create a symlink pointing to a victim file in the time gap between the check and open, causing os.open() to follow the symlink and truncate the target file. All users of filelock on Unix, Linux, macOS, and Windows systems are impacted. The vulnerability cascades to dependent libraries. The attack requires local filesystem access and ability to create symlinks (standard user permissions on Unix; Developer Mode on Windows 10+). Exploitation succeeds within 1-3 attempts when lock file paths are predictable. The issue is fixed in version 3.20.1. If immediate upgrade is not possible, use SoftFileLock instead of UnixFileLock/WindowsFileLock (note: different locking semantics, may not be suitable for all use cases); ensure lock file directories have restrictive permissions (chmod 0700) to prevent untrusted users from creating symlinks; and/or monitor lock file directories for suspicious symlinks before running trusted applications. These workarounds provide only partial mitigation. The race condition remains exploitable. Upgrading to version 3.20.1 is strongly recommended. |
| Windows Work Folder Service Elevation of Privilege Vulnerability |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix a race between renames and directory logging
We have a race between a rename and directory inode logging that if it
happens and we crash/power fail before the rename completes, the next time
the filesystem is mounted, the log replay code will end up deleting the
file that was being renamed.
This is best explained following a step by step analysis of an interleaving
of steps that lead into this situation.
Consider the initial conditions:
1) We are at transaction N;
2) We have directories A and B created in a past transaction (< N);
3) We have inode X corresponding to a file that has 2 hardlinks, one in
directory A and the other in directory B, so we'll name them as
"A/foo_link1" and "B/foo_link2". Both hard links were persisted in a
past transaction (< N);
4) We have inode Y corresponding to a file that as a single hard link and
is located in directory A, we'll name it as "A/bar". This file was also
persisted in a past transaction (< N).
The steps leading to a file loss are the following and for all of them we
are under transaction N:
1) Link "A/foo_link1" is removed, so inode's X last_unlink_trans field
is updated to N, through btrfs_unlink() -> btrfs_record_unlink_dir();
2) Task A starts a rename for inode Y, with the goal of renaming from
"A/bar" to "A/baz", so we enter btrfs_rename();
3) Task A inserts the new BTRFS_INODE_REF_KEY for inode Y by calling
btrfs_insert_inode_ref();
4) Because the rename happens in the same directory, we don't set the
last_unlink_trans field of directoty A's inode to the current
transaction id, that is, we don't cal btrfs_record_unlink_dir();
5) Task A then removes the entries from directory A (BTRFS_DIR_ITEM_KEY
and BTRFS_DIR_INDEX_KEY items) when calling __btrfs_unlink_inode()
(actually the dir index item is added as a delayed item, but the
effect is the same);
6) Now before task A adds the new entry "A/baz" to directory A by
calling btrfs_add_link(), another task, task B is logging inode X;
7) Task B starts a fsync of inode X and after logging inode X, at
btrfs_log_inode_parent() it calls btrfs_log_all_parents(), since
inode X has a last_unlink_trans value of N, set at in step 1;
8) At btrfs_log_all_parents() we search for all parent directories of
inode X using the commit root, so we find directories A and B and log
them. Bu when logging direct A, we don't have a dir index item for
inode Y anymore, neither the old name "A/bar" nor for the new name
"A/baz" since the rename has deleted the old name but has not yet
inserted the new name - task A hasn't called yet btrfs_add_link() to
do that.
Note that logging directory A doesn't fallback to a transaction
commit because its last_unlink_trans has a lower value than the
current transaction's id (see step 4);
9) Task B finishes logging directories A and B and gets back to
btrfs_sync_file() where it calls btrfs_sync_log() to persist the log
tree;
10) Task B successfully persisted the log tree, btrfs_sync_log() completed
with success, and a power failure happened.
We have a log tree without any directory entry for inode Y, so the
log replay code deletes the entry for inode Y, name "A/bar", from the
subvolume tree since it doesn't exist in the log tree and the log
tree is authorative for its index (we logged a BTRFS_DIR_LOG_INDEX_KEY
item that covers the index range for the dentry that corresponds to
"A/bar").
Since there's no other hard link for inode Y and the log replay code
deletes the name "A/bar", the file is lost.
The issue wouldn't happen if task B synced the log only after task A
called btrfs_log_new_name(), which would update the log with the new name
for inode Y ("A/bar").
Fix this by pinning the log root during renames before removing the old
directory entry, and unpinning af
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
VMCI: fix race between vmci_host_setup_notify and vmci_ctx_unset_notify
During our test, it is found that a warning can be trigger in try_grab_folio
as follow:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 1678 at mm/gup.c:147 try_grab_folio+0x106/0x130
Modules linked in:
CPU: 0 UID: 0 PID: 1678 Comm: syz.3.31 Not tainted 6.15.0-rc5 #163 PREEMPT(undef)
RIP: 0010:try_grab_folio+0x106/0x130
Call Trace:
<TASK>
follow_huge_pmd+0x240/0x8e0
follow_pmd_mask.constprop.0.isra.0+0x40b/0x5c0
follow_pud_mask.constprop.0.isra.0+0x14a/0x170
follow_page_mask+0x1c2/0x1f0
__get_user_pages+0x176/0x950
__gup_longterm_locked+0x15b/0x1060
? gup_fast+0x120/0x1f0
gup_fast_fallback+0x17e/0x230
get_user_pages_fast+0x5f/0x80
vmci_host_unlocked_ioctl+0x21c/0xf80
RIP: 0033:0x54d2cd
---[ end trace 0000000000000000 ]---
Digging into the source, context->notify_page may init by get_user_pages_fast
and can be seen in vmci_ctx_unset_notify which will try to put_page. However
get_user_pages_fast is not finished here and lead to following
try_grab_folio warning. The race condition is shown as follow:
cpu0 cpu1
vmci_host_do_set_notify
vmci_host_setup_notify
get_user_pages_fast(uva, 1, FOLL_WRITE, &context->notify_page);
lockless_pages_from_mm
gup_pgd_range
gup_huge_pmd // update &context->notify_page
vmci_host_do_set_notify
vmci_ctx_unset_notify
notify_page = context->notify_page;
if (notify_page)
put_page(notify_page); // page is freed
__gup_longterm_locked
__get_user_pages
follow_trans_huge_pmd
try_grab_folio // warn here
To slove this, use local variable page to make notify_page can be seen
after finish get_user_pages_fast. |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: ets: fix a race in ets_qdisc_change()
Gerrard Tai reported a race condition in ETS, whenever SFQ perturb timer
fires at the wrong time.
The race is as follows:
CPU 0 CPU 1
[1]: lock root
[2]: qdisc_tree_flush_backlog()
[3]: unlock root
|
| [5]: lock root
| [6]: rehash
| [7]: qdisc_tree_reduce_backlog()
|
[4]: qdisc_put()
This can be abused to underflow a parent's qlen.
Calling qdisc_purge_queue() instead of qdisc_tree_flush_backlog()
should fix the race, because all packets will be purged from the qdisc
before releasing the lock. |
| In the Linux kernel, the following vulnerability has been resolved:
net_sched: red: fix a race in __red_change()
Gerrard Tai reported a race condition in RED, whenever SFQ perturb timer
fires at the wrong time.
The race is as follows:
CPU 0 CPU 1
[1]: lock root
[2]: qdisc_tree_flush_backlog()
[3]: unlock root
|
| [5]: lock root
| [6]: rehash
| [7]: qdisc_tree_reduce_backlog()
|
[4]: qdisc_put()
This can be abused to underflow a parent's qlen.
Calling qdisc_purge_queue() instead of qdisc_tree_flush_backlog()
should fix the race, because all packets will be purged from the qdisc
before releasing the lock. |
| In Paramiko before 2.10.1, a race condition (between creation and chmod) in the write_private_key_file function could allow unauthorized information disclosure. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Shell allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Shell allows an authorized attacker to elevate privileges locally. |
| Use after free in Windows DirectX allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Microsoft Brokering File System allows an authorized attacker to elevate privileges locally. |
| MaxKB is an open-source AI assistant for enterprise. In versions 2.3.1 and below, the tool module allows an attacker to escape the sandbox environment and escalate privileges under certain concurrent conditions. This issue is fixed in version 2.4.0. |
| MaxKB is an open-source AI assistant for enterprise. Versions 2.3.1 and below have improper file permissions which allow attackers to overwrite the built-in dynamic linker and other critical files, potentially resulting in privilege escalation. This issue is fixed in version 2.4.0. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: don't reset unchangable mount option in f2fs_remount()
syzbot reports a bug as below:
general protection fault, probably for non-canonical address 0xdffffc0000000009: 0000 [#1] PREEMPT SMP KASAN
RIP: 0010:__lock_acquire+0x69/0x2000 kernel/locking/lockdep.c:4942
Call Trace:
lock_acquire+0x1e3/0x520 kernel/locking/lockdep.c:5691
__raw_write_lock include/linux/rwlock_api_smp.h:209 [inline]
_raw_write_lock+0x2e/0x40 kernel/locking/spinlock.c:300
__drop_extent_tree+0x3ac/0x660 fs/f2fs/extent_cache.c:1100
f2fs_drop_extent_tree+0x17/0x30 fs/f2fs/extent_cache.c:1116
f2fs_insert_range+0x2d5/0x3c0 fs/f2fs/file.c:1664
f2fs_fallocate+0x4e4/0x6d0 fs/f2fs/file.c:1838
vfs_fallocate+0x54b/0x6b0 fs/open.c:324
ksys_fallocate fs/open.c:347 [inline]
__do_sys_fallocate fs/open.c:355 [inline]
__se_sys_fallocate fs/open.c:353 [inline]
__x64_sys_fallocate+0xbd/0x100 fs/open.c:353
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The root cause is race condition as below:
- since it tries to remount rw filesystem, so that do_remount won't
call sb_prepare_remount_readonly to block fallocate, there may be race
condition in between remount and fallocate.
- in f2fs_remount(), default_options() will reset mount option to default
one, and then update it based on result of parse_options(), so there is
a hole which race condition can happen.
Thread A Thread B
- f2fs_fill_super
- parse_options
- clear_opt(READ_EXTENT_CACHE)
- f2fs_remount
- default_options
- set_opt(READ_EXTENT_CACHE)
- f2fs_fallocate
- f2fs_insert_range
- f2fs_drop_extent_tree
- __drop_extent_tree
- __may_extent_tree
- test_opt(READ_EXTENT_CACHE) return true
- write_lock(&et->lock) access NULL pointer
- parse_options
- clear_opt(READ_EXTENT_CACHE) |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Connected Devices Platform Service allows an authorized attacker to elevate privileges locally. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phylink: add lock for serializing concurrent pl->phydev writes with resolver
Currently phylink_resolve() protects itself against concurrent
phylink_bringup_phy() or phylink_disconnect_phy() calls which modify
pl->phydev by relying on pl->state_mutex.
The problem is that in phylink_resolve(), pl->state_mutex is in a lock
inversion state with pl->phydev->lock. So pl->phydev->lock needs to be
acquired prior to pl->state_mutex. But that requires dereferencing
pl->phydev in the first place, and without pl->state_mutex, that is
racy.
Hence the reason for the extra lock. Currently it is redundant, but it
will serve a functional purpose once mutex_lock(&phy->lock) will be
moved outside of the mutex_lock(&pl->state_mutex) section.
Another alternative considered would have been to let phylink_resolve()
acquire the rtnl_mutex, which is also held when phylink_bringup_phy()
and phylink_disconnect_phy() are called. But since phylink_disconnect_phy()
runs under rtnl_lock(), it would deadlock with phylink_resolve() when
calling flush_work(&pl->resolve). Additionally, it would have been
undesirable because it would have unnecessarily blocked many other call
paths as well in the entire kernel, so the smaller-scoped lock was
preferred. |
| In bigo_worker_thread of private/google-modules/video/gchips/bigo.c, there is a possible use after free due to a race condition. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is not needed for exploitation. |