| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
video: fbdev: cirrusfb: check pixclock to avoid divide by zero
Do a sanity check on pixclock value to avoid divide by zero.
If the pixclock value is zero, the cirrusfb driver will round up
pixclock to get the derived frequency as close to maxclock as
possible.
Syzkaller reported a divide error in cirrusfb_check_pixclock.
divide error: 0000 [#1] SMP KASAN PTI
CPU: 0 PID: 14938 Comm: cirrusfb_test Not tainted 5.15.0-rc6 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2
RIP: 0010:cirrusfb_check_var+0x6f1/0x1260
Call Trace:
fb_set_var+0x398/0xf90
do_fb_ioctl+0x4b8/0x6f0
fb_ioctl+0xeb/0x130
__x64_sys_ioctl+0x19d/0x220
do_syscall_64+0x3a/0x80
entry_SYSCALL_64_after_hwframe+0x44/0xae |
| In the Linux kernel, the following vulnerability has been resolved:
net: netlink: af_netlink: Prevent empty skb by adding a check on len.
Adding a check on len parameter to avoid empty skb. This prevents a
division error in netem_enqueue function which is caused when skb->len=0
and skb->data_len=0 in the randomized corruption step as shown below.
skb->data[prandom_u32() % skb_headlen(skb)] ^= 1<<(prandom_u32() % 8);
Crash Report:
[ 343.170349] netdevsim netdevsim0 netdevsim3: set [1, 0] type 2 family
0 port 6081 - 0
[ 343.216110] netem: version 1.3
[ 343.235841] divide error: 0000 [#1] PREEMPT SMP KASAN NOPTI
[ 343.236680] CPU: 3 PID: 4288 Comm: reproducer Not tainted 5.16.0-rc1+
[ 343.237569] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
BIOS 1.11.0-2.el7 04/01/2014
[ 343.238707] RIP: 0010:netem_enqueue+0x1590/0x33c0 [sch_netem]
[ 343.239499] Code: 89 85 58 ff ff ff e8 5f 5d e9 d3 48 8b b5 48 ff ff
ff 8b 8d 50 ff ff ff 8b 85 58 ff ff ff 48 8b bd 70 ff ff ff 31 d2 2b 4f
74 <f7> f1 48 b8 00 00 00 00 00 fc ff df 49 01 d5 4c 89 e9 48 c1 e9 03
[ 343.241883] RSP: 0018:ffff88800bcd7368 EFLAGS: 00010246
[ 343.242589] RAX: 00000000ba7c0a9c RBX: 0000000000000001 RCX:
0000000000000000
[ 343.243542] RDX: 0000000000000000 RSI: ffff88800f8edb10 RDI:
ffff88800f8eda40
[ 343.244474] RBP: ffff88800bcd7458 R08: 0000000000000000 R09:
ffffffff94fb8445
[ 343.245403] R10: ffffffff94fb8336 R11: ffffffff94fb8445 R12:
0000000000000000
[ 343.246355] R13: ffff88800a5a7000 R14: ffff88800a5b5800 R15:
0000000000000020
[ 343.247291] FS: 00007fdde2bd7700(0000) GS:ffff888109780000(0000)
knlGS:0000000000000000
[ 343.248350] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 343.249120] CR2: 00000000200000c0 CR3: 000000000ef4c000 CR4:
00000000000006e0
[ 343.250076] Call Trace:
[ 343.250423] <TASK>
[ 343.250713] ? memcpy+0x4d/0x60
[ 343.251162] ? netem_init+0xa0/0xa0 [sch_netem]
[ 343.251795] ? __sanitizer_cov_trace_pc+0x21/0x60
[ 343.252443] netem_enqueue+0xe28/0x33c0 [sch_netem]
[ 343.253102] ? stack_trace_save+0x87/0xb0
[ 343.253655] ? filter_irq_stacks+0xb0/0xb0
[ 343.254220] ? netem_init+0xa0/0xa0 [sch_netem]
[ 343.254837] ? __kasan_check_write+0x14/0x20
[ 343.255418] ? _raw_spin_lock+0x88/0xd6
[ 343.255953] dev_qdisc_enqueue+0x50/0x180
[ 343.256508] __dev_queue_xmit+0x1a7e/0x3090
[ 343.257083] ? netdev_core_pick_tx+0x300/0x300
[ 343.257690] ? check_kcov_mode+0x10/0x40
[ 343.258219] ? _raw_spin_unlock_irqrestore+0x29/0x40
[ 343.258899] ? __kasan_init_slab_obj+0x24/0x30
[ 343.259529] ? setup_object.isra.71+0x23/0x90
[ 343.260121] ? new_slab+0x26e/0x4b0
[ 343.260609] ? kasan_poison+0x3a/0x50
[ 343.261118] ? kasan_unpoison+0x28/0x50
[ 343.261637] ? __kasan_slab_alloc+0x71/0x90
[ 343.262214] ? memcpy+0x4d/0x60
[ 343.262674] ? write_comp_data+0x2f/0x90
[ 343.263209] ? __kasan_check_write+0x14/0x20
[ 343.263802] ? __skb_clone+0x5d6/0x840
[ 343.264329] ? __sanitizer_cov_trace_pc+0x21/0x60
[ 343.264958] dev_queue_xmit+0x1c/0x20
[ 343.265470] netlink_deliver_tap+0x652/0x9c0
[ 343.266067] netlink_unicast+0x5a0/0x7f0
[ 343.266608] ? netlink_attachskb+0x860/0x860
[ 343.267183] ? __sanitizer_cov_trace_pc+0x21/0x60
[ 343.267820] ? write_comp_data+0x2f/0x90
[ 343.268367] netlink_sendmsg+0x922/0xe80
[ 343.268899] ? netlink_unicast+0x7f0/0x7f0
[ 343.269472] ? __sanitizer_cov_trace_pc+0x21/0x60
[ 343.270099] ? write_comp_data+0x2f/0x90
[ 343.270644] ? netlink_unicast+0x7f0/0x7f0
[ 343.271210] sock_sendmsg+0x155/0x190
[ 343.271721] ____sys_sendmsg+0x75f/0x8f0
[ 343.272262] ? kernel_sendmsg+0x60/0x60
[ 343.272788] ? write_comp_data+0x2f/0x90
[ 343.273332] ? write_comp_data+0x2f/0x90
[ 343.273869] ___sys_sendmsg+0x10f/0x190
[ 343.274405] ? sendmsg_copy_msghdr+0x80/0x80
[ 343.274984] ? slab_post_alloc_hook+0x70/0x230
[ 343.275597] ? futex_wait_setup+0x240/0x240
[ 343.276175] ? security_file_alloc+0x3e/0x170
[ 343.276779] ? write_comp_d
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
usbnet: sanity check for maxpacket
maxpacket of 0 makes no sense and oopses as we need to divide
by it. Give up.
V2: fixed typo in log and stylistic issues |
| In the Linux kernel, the following vulnerability has been resolved:
net: hibmcge: fix the division by zero issue
When the network port is down, the queue is released, and ring->len is 0.
In debugfs, hbg_get_queue_used_num() will be called,
which may lead to a division by zero issue.
This patch adds a check, if ring->len is 0,
hbg_get_queue_used_num() directly returns 0. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: 8852a: rfk: fix div 0 exception
The DPK is a kind of RF calibration whose algorithm is to fine tune
parameters and calibrate, and check the result. If the result isn't good
enough, it could adjust parameters and try again.
This issue is to read and show the result, but it could be a negative
calibration result that causes divisor 0 and core dump. So, fix it by
phy_div() that does division only if divisor isn't zero; otherwise,
zero is adopted.
divide error: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 728 Comm: wpa_supplicant Not tainted 5.10.114-16019-g462a1661811a #1 <HASH:d024 28>
RIP: 0010:rtw8852a_dpk+0x14ae/0x288f [rtw89_core]
RSP: 0018:ffffa9bb412a7520 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 00000000000180fc RDI: ffffa141d01023c0
RBP: ffffa9bb412a76a0 R08: 0000000000001319 R09: 00000000ffffff92
R10: ffffffffc0292de3 R11: ffffffffc00d2f51 R12: 0000000000000000
R13: ffffa141d01023c0 R14: ffffffffc0290250 R15: ffffa141d0102638
FS: 00007fa99f5c2740(0000) GS:ffffa142e5e80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000013e8e010 CR3: 0000000110d2c000 CR4: 0000000000750ee0
PKRU: 55555554
Call Trace:
rtw89_core_sta_add+0x95/0x9c [rtw89_core <HASH:d239 29>]
rtw89_ops_sta_state+0x5d/0x108 [rtw89_core <HASH:d239 29>]
drv_sta_state+0x115/0x66f [mac80211 <HASH:81fe 30>]
sta_info_insert_rcu+0x45c/0x713 [mac80211 <HASH:81fe 30>]
sta_info_insert+0xf/0x1b [mac80211 <HASH:81fe 30>]
ieee80211_prep_connection+0x9d6/0xb0c [mac80211 <HASH:81fe 30>]
ieee80211_mgd_auth+0x2aa/0x352 [mac80211 <HASH:81fe 30>]
cfg80211_mlme_auth+0x160/0x1f6 [cfg80211 <HASH:00cd 31>]
nl80211_authenticate+0x2e5/0x306 [cfg80211 <HASH:00cd 31>]
genl_rcv_msg+0x371/0x3a1
? nl80211_stop_sched_scan+0xe5/0xe5 [cfg80211 <HASH:00cd 31>]
? genl_rcv+0x36/0x36
netlink_rcv_skb+0x8a/0xf9
genl_rcv+0x28/0x36
netlink_unicast+0x27b/0x3a0
netlink_sendmsg+0x2aa/0x469
sock_sendmsg_nosec+0x49/0x4d
____sys_sendmsg+0xe5/0x213
__sys_sendmsg+0xec/0x157
? syscall_enter_from_user_mode+0xd7/0x116
do_syscall_64+0x43/0x55
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7fa99f6e689b |
| In the Linux kernel, the following vulnerability has been resolved:
net: stmmac: make sure that ptp_rate is not 0 before configuring EST
If the ptp_rate recorded earlier in the driver happens to be 0, this
bogus value will propagate up to EST configuration, where it will
trigger a division by 0.
Prevent this division by 0 by adding the corresponding check and error
code. |
| In the Linux kernel, the following vulnerability has been resolved:
PM: EM: Fix potential division-by-zero error in em_compute_costs()
When the device is of a non-CPU type, table[i].performance won't be
initialized in the previous em_init_performance(), resulting in division
by zero when calculating costs in em_compute_costs().
Since the 'cost' algorithm is only used for EAS energy efficiency
calculations and is currently not utilized by other device drivers, we
should add the _is_cpu_device(dev) check to prevent this division-by-zero
issue. |
| In the Linux kernel, the following vulnerability has been resolved:
video: fbdev: arkfb: Fix a divide-by-zero bug in ark_set_pixclock()
Since the user can control the arguments of the ioctl() from the user
space, under special arguments that may result in a divide-by-zero bug
in:
drivers/video/fbdev/arkfb.c:784: ark_set_pixclock(info, (hdiv * info->var.pixclock) / hmul);
with hdiv=1, pixclock=1 and hmul=2 you end up with (1*1)/2 = (int) 0.
and then in:
drivers/video/fbdev/arkfb.c:504: rv = dac_set_freq(par->dac, 0, 1000000000 / pixclock);
we'll get a division-by-zero.
The following log can reveal it:
divide error: 0000 [#1] PREEMPT SMP KASAN PTI
RIP: 0010:ark_set_pixclock drivers/video/fbdev/arkfb.c:504 [inline]
RIP: 0010:arkfb_set_par+0x10fc/0x24c0 drivers/video/fbdev/arkfb.c:784
Call Trace:
fb_set_var+0x604/0xeb0 drivers/video/fbdev/core/fbmem.c:1034
do_fb_ioctl+0x234/0x670 drivers/video/fbdev/core/fbmem.c:1110
fb_ioctl+0xdd/0x130 drivers/video/fbdev/core/fbmem.c:1189
Fix this by checking the argument of ark_set_pixclock() first. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon: fix divide by zero in damon_get_intervals_score()
The current implementation allows having zero size regions with no special
reasons, but damon_get_intervals_score() gets crashed by divide by zero
when the region size is zero.
[ 29.403950] Oops: divide error: 0000 [#1] SMP NOPTI
This patch fixes the bug, but does not disallow zero size regions to keep
the backward compatibility since disallowing zero size regions might be a
breaking change for some users.
In addition, the same crash can happen when intervals_goal.access_bp is
zero so this should be fixed in stable trees as well. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Avoid divide by zero by initializing dummy pitch to 1
[Why]
If the dummy values in `populate_dummy_dml_surface_cfg()` aren't updated
then they can lead to a divide by zero in downstream callers like
CalculateVMAndRowBytes()
[How]
Initialize dummy value to a value to avoid divide by zero. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: spi-mem: Add fix to avoid divide error
For some SPI flash memory operations, dummy bytes are not mandatory. For
example, in Winbond SPINAND flash memory devices, the `write_cache` and
`update_cache` operation variants have zero dummy bytes. Calculating the
duration for SPI memory operations with zero dummy bytes causes
a divide error when `ncycles` is calculated in the
spi_mem_calc_op_duration().
Add changes to skip the 'ncylcles' calculation for zero dummy bytes.
Following divide error is fixed by this change:
Oops: divide error: 0000 [#1] PREEMPT SMP NOPTI
...
? do_trap+0xdb/0x100
? do_error_trap+0x75/0xb0
? spi_mem_calc_op_duration+0x56/0xb0
? exc_divide_error+0x3b/0x70
? spi_mem_calc_op_duration+0x56/0xb0
? asm_exc_divide_error+0x1b/0x20
? spi_mem_calc_op_duration+0x56/0xb0
? spinand_select_op_variant+0xee/0x190 [spinand]
spinand_match_and_init+0x13e/0x1a0 [spinand]
spinand_manufacturer_match+0x6e/0xa0 [spinand]
spinand_probe+0x357/0x7f0 [spinand]
? kernfs_activate+0x87/0xd0
spi_mem_probe+0x7a/0xb0
spi_probe+0x7d/0x130 |
| In the Linux kernel, the following vulnerability has been resolved:
pwm: mediatek: Prevent divide-by-zero in pwm_mediatek_config()
With CONFIG_COMPILE_TEST && !CONFIG_HAVE_CLK, pwm_mediatek_config() has a
divide-by-zero in the following line:
do_div(resolution, clk_get_rate(pc->clk_pwms[pwm->hwpwm]));
due to the fact that the !CONFIG_HAVE_CLK version of clk_get_rate()
returns zero.
This is presumably just a theoretical problem: COMPILE_TEST overrides
the dependency on RALINK which would select COMMON_CLK. Regardless it's
a good idea to check for the error explicitly to avoid divide-by-zero.
Fixes the following warning:
drivers/pwm/pwm-mediatek.o: warning: objtool: .text: unexpected end of section
[ukleinek: s/CONFIG_CLK/CONFIG_HAVE_CLK/] |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: fb_pm2fb: Avoid potential divide by zero error
In `do_fb_ioctl()` of fbmem.c, if cmd is FBIOPUT_VSCREENINFO, var will be
copied from user, then go through `fb_set_var()` and
`info->fbops->fb_check_var()` which could may be `pm2fb_check_var()`.
Along the path, `var->pixclock` won't be modified. This function checks
whether reciprocal of `var->pixclock` is too high. If `var->pixclock` is
zero, there will be a divide by zero error. So, it is necessary to check
whether denominator is zero to avoid crash. As this bug is found by
Syzkaller, logs are listed below.
divide error in pm2fb_check_var
Call Trace:
<TASK>
fb_set_var+0x367/0xeb0 drivers/video/fbdev/core/fbmem.c:1015
do_fb_ioctl+0x234/0x670 drivers/video/fbdev/core/fbmem.c:1110
fb_ioctl+0xdd/0x130 drivers/video/fbdev/core/fbmem.c:1189 |
| In the Linux kernel, the following vulnerability has been resolved:
video: fbdev: i740fb: Check the argument of i740_calc_vclk()
Since the user can control the arguments of the ioctl() from the user
space, under special arguments that may result in a divide-by-zero bug.
If the user provides an improper 'pixclock' value that makes the argumet
of i740_calc_vclk() less than 'I740_RFREQ_FIX', it will cause a
divide-by-zero bug in:
drivers/video/fbdev/i740fb.c:353 p_best = min(15, ilog2(I740_MAX_VCO_FREQ / (freq / I740_RFREQ_FIX)));
The following log can reveal it:
divide error: 0000 [#1] PREEMPT SMP KASAN PTI
RIP: 0010:i740_calc_vclk drivers/video/fbdev/i740fb.c:353 [inline]
RIP: 0010:i740fb_decode_var drivers/video/fbdev/i740fb.c:646 [inline]
RIP: 0010:i740fb_set_par+0x163f/0x3b70 drivers/video/fbdev/i740fb.c:742
Call Trace:
fb_set_var+0x604/0xeb0 drivers/video/fbdev/core/fbmem.c:1034
do_fb_ioctl+0x234/0x670 drivers/video/fbdev/core/fbmem.c:1110
fb_ioctl+0xdd/0x130 drivers/video/fbdev/core/fbmem.c:1189
Fix this by checking the argument of i740_calc_vclk() first. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: Prevent division by zero
The user can set any speed value.
If speed is greater than UINT_MAX/8, division by zero is possible.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: Prevent division by zero
The user can set any speed value.
If speed is greater than UINT_MAX/8, division by zero is possible.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: Prevent division by zero
The user can set any speed value.
If speed is greater than UINT_MAX/8, division by zero is possible.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm/smu11: Prevent division by zero
The user can set any speed value.
If speed is greater than UINT_MAX/8, division by zero is possible.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
(cherry picked from commit da7dc714a8f8e1c9fc33c57cd63583779a3bef71) |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: Prevent division by zero
The user can set any speed value.
If speed is greater than UINT_MAX/8, division by zero is possible.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: Prevent division by zero
The user can set any speed value.
If speed is greater than UINT_MAX/8, division by zero is possible.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |