| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An incomplete fix was shipped for the Rapid Reset (CVE-2023-44487/CVE-2023-39325) vulnerability for an OpenShift Containers. |
| Positive Technologies MaxPatrol 8 and XSpider contain a remote denial-of-service vulnerability in the client communication service on TCP port 2002. The service generates a new session identifier for each incoming connection without adequately limiting concurrent requests. An unauthenticated remote attacker can repeatedly issue HTTPS requests to the service, causing excessive allocation of session identifiers. Under load, session identifier collisions may occur, forcing active client sessions to disconnect and resulting in service disruption. |
| ReQuest Serious Play F3 Media Server versions 7.0.3.4968 (Pro), 7.0.2.4954, 6.5.2.4954, 6.4.2.4681, 6.3.2.4203, and 2.0.1.823 contain a remote denial-of-service vulnerability. The device can be shut down or rebooted by an unauthenticated attacker through a single crafted HTTP GET request, allowing remote interruption of service availability. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: fix small mempool leak in SMB2_negotiate()
In some cases of failure (dialect mismatches) in SMB2_negotiate(), after
the request is sent, the checks would return -EIO when they should be
rather setting rc = -EIO and jumping to neg_exit to free the response
buffer from mempool. |
| In the Linux kernel, the following vulnerability has been resolved:
x86/vmscape: Add conditional IBPB mitigation
VMSCAPE is a vulnerability that exploits insufficient branch predictor
isolation between a guest and a userspace hypervisor (like QEMU). Existing
mitigations already protect kernel/KVM from a malicious guest. Userspace
can additionally be protected by flushing the branch predictors after a
VMexit.
Since it is the userspace that consumes the poisoned branch predictors,
conditionally issue an IBPB after a VMexit and before returning to
userspace. Workloads that frequently switch between hypervisor and
userspace will incur the most overhead from the new IBPB.
This new IBPB is not integrated with the existing IBPB sites. For
instance, a task can use the existing speculation control prctl() to
get an IBPB at context switch time. With this implementation, the
IBPB is doubled up: one at context switch and another before running
userspace.
The intent is to integrate and optimize these cases post-embargo.
[ dhansen: elaborate on suboptimal IBPB solution ] |
| In the Linux kernel, the following vulnerability has been resolved:
firmware_loader: Fix memory leak in firmware upload
In the case of firmware-upload, an instance of struct fw_upload is
allocated in firmware_upload_register(). This data needs to be freed
in fw_dev_release(). Create a new fw_upload_free() function in
sysfs_upload.c to handle the firmware-upload specific memory frees
and incorporate the missing kfree call for the fw_upload structure. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: hidraw: fix memory leak in hidraw_release()
Free the buffered reports before deleting the list entry.
BUG: memory leak
unreferenced object 0xffff88810e72f180 (size 32):
comm "softirq", pid 0, jiffies 4294945143 (age 16.080s)
hex dump (first 32 bytes):
64 f3 c6 6a d1 88 07 04 00 00 00 00 00 00 00 00 d..j............
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff814ac6c3>] kmemdup+0x23/0x50 mm/util.c:128
[<ffffffff8357c1d2>] kmemdup include/linux/fortify-string.h:440 [inline]
[<ffffffff8357c1d2>] hidraw_report_event+0xa2/0x150 drivers/hid/hidraw.c:521
[<ffffffff8356ddad>] hid_report_raw_event+0x27d/0x740 drivers/hid/hid-core.c:1992
[<ffffffff8356e41e>] hid_input_report+0x1ae/0x270 drivers/hid/hid-core.c:2065
[<ffffffff835f0d3f>] hid_irq_in+0x1ff/0x250 drivers/hid/usbhid/hid-core.c:284
[<ffffffff82d3c7f9>] __usb_hcd_giveback_urb+0xf9/0x230 drivers/usb/core/hcd.c:1670
[<ffffffff82d3cc26>] usb_hcd_giveback_urb+0x1b6/0x1d0 drivers/usb/core/hcd.c:1747
[<ffffffff82ef1e14>] dummy_timer+0x8e4/0x14c0 drivers/usb/gadget/udc/dummy_hcd.c:1988
[<ffffffff812f50a8>] call_timer_fn+0x38/0x200 kernel/time/timer.c:1474
[<ffffffff812f5586>] expire_timers kernel/time/timer.c:1519 [inline]
[<ffffffff812f5586>] __run_timers.part.0+0x316/0x430 kernel/time/timer.c:1790
[<ffffffff812f56e4>] __run_timers kernel/time/timer.c:1768 [inline]
[<ffffffff812f56e4>] run_timer_softirq+0x44/0x90 kernel/time/timer.c:1803
[<ffffffff848000e6>] __do_softirq+0xe6/0x2ea kernel/softirq.c:571
[<ffffffff81246db0>] invoke_softirq kernel/softirq.c:445 [inline]
[<ffffffff81246db0>] __irq_exit_rcu kernel/softirq.c:650 [inline]
[<ffffffff81246db0>] irq_exit_rcu+0xc0/0x110 kernel/softirq.c:662
[<ffffffff84574f02>] sysvec_apic_timer_interrupt+0xa2/0xd0 arch/x86/kernel/apic/apic.c:1106
[<ffffffff84600c8b>] asm_sysvec_apic_timer_interrupt+0x1b/0x20 arch/x86/include/asm/idtentry.h:649
[<ffffffff8458a070>] native_safe_halt arch/x86/include/asm/irqflags.h:51 [inline]
[<ffffffff8458a070>] arch_safe_halt arch/x86/include/asm/irqflags.h:89 [inline]
[<ffffffff8458a070>] acpi_safe_halt drivers/acpi/processor_idle.c:111 [inline]
[<ffffffff8458a070>] acpi_idle_do_entry+0xc0/0xd0 drivers/acpi/processor_idle.c:554 |
| In the Linux kernel, the following vulnerability has been resolved:
media: pvrusb2: fix memory leak in pvr_probe
The error handling code in pvr2_hdw_create forgets to unregister the
v4l2 device. When pvr2_hdw_create returns back to pvr2_context_create,
it calls pvr2_context_destroy to destroy context, but mp->hdw is NULL,
which leads to that pvr2_hdw_destroy directly returns.
Fix this by adding v4l2_device_unregister to decrease the refcount of
usb interface. |
| In the Linux kernel, the following vulnerability has been resolved:
bootmem: remove the vmemmap pages from kmemleak in put_page_bootmem
The vmemmap pages is marked by kmemleak when allocated from memblock.
Remove it from kmemleak when freeing the page. Otherwise, when we reuse
the page, kmemleak may report such an error and then stop working.
kmemleak: Cannot insert 0xffff98fb6eab3d40 into the object search tree (overlaps existing)
kmemleak: Kernel memory leak detector disabled
kmemleak: Object 0xffff98fb6be00000 (size 335544320):
kmemleak: comm "swapper", pid 0, jiffies 4294892296
kmemleak: min_count = 0
kmemleak: count = 0
kmemleak: flags = 0x1
kmemleak: checksum = 0
kmemleak: backtrace: |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix possible memory leak in btrfs_get_dev_args_from_path()
In btrfs_get_dev_args_from_path(), btrfs_get_bdev_and_sb() can fail if
the path is invalid. In this case, btrfs_get_dev_args_from_path()
returns directly without freeing args->uuid and args->fsid allocated
before, which causes memory leak.
To fix these possible leaks, when btrfs_get_bdev_and_sb() fails,
btrfs_put_dev_args_from_path() is called to clean up the memory. |
| In the Linux kernel, the following vulnerability has been resolved:
net: lantiq_xrx200: restore buffer if memory allocation failed
In a situation where memory allocation fails, an invalid buffer address
is stored. When this descriptor is used again, the system panics in the
build_skb() function when accessing memory. |
| In the Linux kernel, the following vulnerability has been resolved:
openvswitch: fix memory leak at failed datapath creation
ovs_dp_cmd_new()->ovs_dp_change()->ovs_dp_set_upcall_portids()
allocates array via kmalloc.
If for some reason new_vport() fails during ovs_dp_cmd_new()
dp->upcall_portids must be freed.
Add missing kfree.
Kmemleak example:
unreferenced object 0xffff88800c382500 (size 64):
comm "dump_state", pid 323, jiffies 4294955418 (age 104.347s)
hex dump (first 32 bytes):
5e c2 79 e4 1f 7a 38 c7 09 21 38 0c 80 88 ff ff ^.y..z8..!8.....
03 00 00 00 0a 00 00 00 14 00 00 00 28 00 00 00 ............(...
backtrace:
[<0000000071bebc9f>] ovs_dp_set_upcall_portids+0x38/0xa0
[<000000000187d8bd>] ovs_dp_change+0x63/0xe0
[<000000002397e446>] ovs_dp_cmd_new+0x1f0/0x380
[<00000000aa06f36e>] genl_family_rcv_msg_doit+0xea/0x150
[<000000008f583bc4>] genl_rcv_msg+0xdc/0x1e0
[<00000000fa10e377>] netlink_rcv_skb+0x50/0x100
[<000000004959cece>] genl_rcv+0x24/0x40
[<000000004699ac7f>] netlink_unicast+0x23e/0x360
[<00000000c153573e>] netlink_sendmsg+0x24e/0x4b0
[<000000006f4aa380>] sock_sendmsg+0x62/0x70
[<00000000d0068654>] ____sys_sendmsg+0x230/0x270
[<0000000012dacf7d>] ___sys_sendmsg+0x88/0xd0
[<0000000011776020>] __sys_sendmsg+0x59/0xa0
[<000000002e8f2dc1>] do_syscall_64+0x3b/0x90
[<000000003243e7cb>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: add missing ->fini_xxxx interfaces for some SMU13 asics
Without these, potential memory leak may be induced. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/pm: add missing ->fini_microcode interface for Sienna Cichlid
To avoid any potential memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: vmbus: Leak pages if set_memory_encrypted() fails
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
VMBus code could free decrypted pages if set_memory_encrypted()/decrypted()
fails. Leak the pages if this happens. |
| In the Linux kernel, the following vulnerability has been resolved:
espintcp: fix skb leaks
A few error paths are missing a kfree_skb. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-net: free xsk_buffs on error in virtnet_xsk_pool_enable()
The selftests added to our CI by Bui Quang Minh recently reveals
that there is a mem leak on the error path of virtnet_xsk_pool_enable():
unreferenced object 0xffff88800a68a000 (size 2048):
comm "xdp_helper", pid 318, jiffies 4294692778
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 0):
__kvmalloc_node_noprof+0x402/0x570
virtnet_xsk_pool_enable+0x293/0x6a0 (drivers/net/virtio_net.c:5882)
xp_assign_dev+0x369/0x670 (net/xdp/xsk_buff_pool.c:226)
xsk_bind+0x6a5/0x1ae0
__sys_bind+0x15e/0x230
__x64_sys_bind+0x72/0xb0
do_syscall_64+0xc1/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f |
| In the Linux kernel, the following vulnerability has been resolved:
block: fix resource leak in blk_register_queue() error path
When registering a queue fails after blk_mq_sysfs_register() is
successful but the function later encounters an error, we need
to clean up the blk_mq_sysfs resources.
Add the missing blk_mq_sysfs_unregister() call in the error path
to properly clean up these resources and prevent a memory leak. |
| Improper Resource Shutdown or Release vulnerability in Apache Tomcat.
If an error occurred (including exceeding limits) during the processing of a multipart upload, temporary copies of the uploaded parts written to disc were not cleaned up immediately but left for the garbage collection process to delete. Depending on JVM settings, application memory usage and application load, it was possible that space for the temporary copies of uploaded parts would be filled faster than GC cleared it, leading to a DoS.
This issue affects Apache Tomcat: from 11.0.0-M1 through 11.0.11, from 10.1.0-M1 through 10.1.46, from 9.0.0.M1 through 9.0.109.
The following versions were EOL at the time the CVE was created but are
known to be affected: 8.5.0 though 8.5.100. Other, older, EOL versions may also be affected.
Users are recommended to upgrade to version 11.0.12 or later, 10.1.47 or later or 9.0.110 or later which fixes the issue. |
| An issue was discovered in dvsekhvalnov jose2go 1.5.0 thru 1.7.0 allowing an attacker to cause a Denial-of-Service (DoS) via crafted JSON Web Encryption (JWE) token with an exceptionally high compression ratio. |