| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
x86/vmscape: Add conditional IBPB mitigation
VMSCAPE is a vulnerability that exploits insufficient branch predictor
isolation between a guest and a userspace hypervisor (like QEMU). Existing
mitigations already protect kernel/KVM from a malicious guest. Userspace
can additionally be protected by flushing the branch predictors after a
VMexit.
Since it is the userspace that consumes the poisoned branch predictors,
conditionally issue an IBPB after a VMexit and before returning to
userspace. Workloads that frequently switch between hypervisor and
userspace will incur the most overhead from the new IBPB.
This new IBPB is not integrated with the existing IBPB sites. For
instance, a task can use the existing speculation control prctl() to
get an IBPB at context switch time. With this implementation, the
IBPB is doubled up: one at context switch and another before running
userspace.
The intent is to integrate and optimize these cases post-embargo.
[ dhansen: elaborate on suboptimal IBPB solution ] |
| A vulnerability has been identified in SICAM GridEdge (Classic) (All versions < V2.6.6). The affected application discloses password hashes of other users upon request. This could allow an authenticated user to retrieve another user's password hash. |
| A flaw was found in the blkgs destruction path in block/blk-cgroup.c in the Linux kernel, leading to a cgroup blkio memory leakage problem. When a cgroup is being destroyed, cgroup_rstat_flush() is only called at css_release_work_fn(), which is called when the blkcg reference count reaches 0. This circular dependency will prevent blkcg and some blkgs from being freed after they are made offline. This issue may allow an attacker with a local access to cause system instability, such as an out of memory error. |
| The YouDao plugin for StarDict, as used in stardict 3.0.7+git20220909+dfsg-6 in Debian trixie and elsewhere, sends an X11 selection to the dict.youdao.com and dict.cn servers via cleartext HTTP. |
| In the Linux kernel, the following vulnerability has been resolved:
genirq/cpuhotplug, x86/vector: Prevent vector leak during CPU offline
The absence of IRQD_MOVE_PCNTXT prevents immediate effectiveness of
interrupt affinity reconfiguration via procfs. Instead, the change is
deferred until the next instance of the interrupt being triggered on the
original CPU.
When the interrupt next triggers on the original CPU, the new affinity is
enforced within __irq_move_irq(). A vector is allocated from the new CPU,
but the old vector on the original CPU remains and is not immediately
reclaimed. Instead, apicd->move_in_progress is flagged, and the reclaiming
process is delayed until the next trigger of the interrupt on the new CPU.
Upon the subsequent triggering of the interrupt on the new CPU,
irq_complete_move() adds a task to the old CPU's vector_cleanup list if it
remains online. Subsequently, the timer on the old CPU iterates over its
vector_cleanup list, reclaiming old vectors.
However, a rare scenario arises if the old CPU is outgoing before the
interrupt triggers again on the new CPU.
In that case irq_force_complete_move() is not invoked on the outgoing CPU
to reclaim the old apicd->prev_vector because the interrupt isn't currently
affine to the outgoing CPU, and irq_needs_fixup() returns false. Even
though __vector_schedule_cleanup() is later called on the new CPU, it
doesn't reclaim apicd->prev_vector; instead, it simply resets both
apicd->move_in_progress and apicd->prev_vector to 0.
As a result, the vector remains unreclaimed in vector_matrix, leading to a
CPU vector leak.
To address this issue, move the invocation of irq_force_complete_move()
before the irq_needs_fixup() call to reclaim apicd->prev_vector, if the
interrupt is currently or used to be affine to the outgoing CPU.
Additionally, reclaim the vector in __vector_schedule_cleanup() as well,
following a warning message, although theoretically it should never see
apicd->move_in_progress with apicd->prev_cpu pointing to an offline CPU. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_set_pipapo: do not free live element
Pablo reports a crash with large batches of elements with a
back-to-back add/remove pattern. Quoting Pablo:
add_elem("00000000") timeout 100 ms
...
add_elem("0000000X") timeout 100 ms
del_elem("0000000X") <---------------- delete one that was just added
...
add_elem("00005000") timeout 100 ms
1) nft_pipapo_remove() removes element 0000000X
Then, KASAN shows a splat.
Looking at the remove function there is a chance that we will drop a
rule that maps to a non-deactivated element.
Removal happens in two steps, first we do a lookup for key k and return the
to-be-removed element and mark it as inactive in the next generation.
Then, in a second step, the element gets removed from the set/map.
The _remove function does not work correctly if we have more than one
element that share the same key.
This can happen if we insert an element into a set when the set already
holds an element with same key, but the element mapping to the existing
key has timed out or is not active in the next generation.
In such case its possible that removal will unmap the wrong element.
If this happens, we will leak the non-deactivated element, it becomes
unreachable.
The element that got deactivated (and will be freed later) will
remain reachable in the set data structure, this can result in
a crash when such an element is retrieved during lookup (stale
pointer).
Add a check that the fully matching key does in fact map to the element
that we have marked as inactive in the deactivation step.
If not, we need to continue searching.
Add a bug/warn trap at the end of the function as well, the remove
function must not ever be called with an invisible/unreachable/non-existent
element.
v2: avoid uneeded temporary variable (Stefano) |
| In Amanda 3.5.1, an information leak vulnerability was found in the calcsize SUID binary. An attacker can abuse this vulnerability to know if a directory exists or not anywhere in the fs. The binary will use `opendir()` as root directly without checking the path, letting the attacker provide an arbitrary path. |
| In the Linux kernel, the following vulnerability has been resolved:
fuse: Initialize beyond-EOF page contents before setting uptodate
fuse_notify_store(), unlike fuse_do_readpage(), does not enable page
zeroing (because it can be used to change partial page contents).
So fuse_notify_store() must be more careful to fully initialize page
contents (including parts of the page that are beyond end-of-file)
before marking the page uptodate.
The current code can leave beyond-EOF page contents uninitialized, which
makes these uninitialized page contents visible to userspace via mmap().
This is an information leak, but only affects systems which do not
enable init-on-alloc (via CONFIG_INIT_ON_ALLOC_DEFAULT_ON=y or the
corresponding kernel command line parameter). |
| In the Linux kernel, the following vulnerability has been resolved:
vhost/vsock: always initialize seqpacket_allow
There are two issues around seqpacket_allow:
1. seqpacket_allow is not initialized when socket is
created. Thus if features are never set, it will be
read uninitialized.
2. if VIRTIO_VSOCK_F_SEQPACKET is set and then cleared,
then seqpacket_allow will not be cleared appropriately
(existing apps I know about don't usually do this but
it's legal and there's no way to be sure no one relies
on this).
To fix:
- initialize seqpacket_allow after allocation
- set it unconditionally in set_features |
| In the Linux kernel, the following vulnerability has been resolved:
devres: Fix memory leakage caused by driver API devm_free_percpu()
It will cause memory leakage when use driver API devm_free_percpu()
to free memory allocated by devm_alloc_percpu(), fixed by using
devres_release() instead of devres_destroy() within devm_free_percpu(). |
| In the Linux kernel, the following vulnerability has been resolved:
perf: Fix event leak upon exec and file release
The perf pending task work is never waited upon the matching event
release. In the case of a child event, released via free_event()
directly, this can potentially result in a leaked event, such as in the
following scenario that doesn't even require a weak IRQ work
implementation to trigger:
schedule()
prepare_task_switch()
=======> <NMI>
perf_event_overflow()
event->pending_sigtrap = ...
irq_work_queue(&event->pending_irq)
<======= </NMI>
perf_event_task_sched_out()
event_sched_out()
event->pending_sigtrap = 0;
atomic_long_inc_not_zero(&event->refcount)
task_work_add(&event->pending_task)
finish_lock_switch()
=======> <IRQ>
perf_pending_irq()
//do nothing, rely on pending task work
<======= </IRQ>
begin_new_exec()
perf_event_exit_task()
perf_event_exit_event()
// If is child event
free_event()
WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1)
// event is leaked
Similar scenarios can also happen with perf_event_remove_on_exec() or
simply against concurrent perf_event_release().
Fix this with synchonizing against the possibly remaining pending task
work while freeing the event, just like is done with remaining pending
IRQ work. This means that the pending task callback neither need nor
should hold a reference to the event, preventing it from ever beeing
freed. |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: qmi_wwan: fix memory leak for not ip packets
Free the unused skb when not ip packets arrive. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet: always initialize cqe.result
The spec doesn't mandate that the first two double words (aka results)
for the command queue entry need to be set to 0 when they are not
used (not specified). Though, the target implemention returns 0 for TCP
and FC but not for RDMA.
Let's make RDMA behave the same and thus explicitly initializing the
result field. This prevents leaking any data from the stack. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/sec - Fix memory leak for sec resource release
The AIV is one of the SEC resources. When releasing resources,
it need to release the AIV resources at the same time.
Otherwise, memory leakage occurs.
The aiv resource release is added to the sec resource release
function. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/sqpoll: work around a potential audit memory leak
kmemleak complains that there's a memory leak related to connect
handling:
unreferenced object 0xffff0001093bdf00 (size 128):
comm "iou-sqp-455", pid 457, jiffies 4294894164
hex dump (first 32 bytes):
02 00 fa ea 7f 00 00 01 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace (crc 2e481b1a):
[<00000000c0a26af4>] kmemleak_alloc+0x30/0x38
[<000000009c30bb45>] kmalloc_trace+0x228/0x358
[<000000009da9d39f>] __audit_sockaddr+0xd0/0x138
[<0000000089a93e34>] move_addr_to_kernel+0x1a0/0x1f8
[<000000000b4e80e6>] io_connect_prep+0x1ec/0x2d4
[<00000000abfbcd99>] io_submit_sqes+0x588/0x1e48
[<00000000e7c25e07>] io_sq_thread+0x8a4/0x10e4
[<00000000d999b491>] ret_from_fork+0x10/0x20
which can can happen if:
1) The command type does something on the prep side that triggers an
audit call.
2) The thread hasn't done any operations before this that triggered
an audit call inside ->issue(), where we have audit_uring_entry()
and audit_uring_exit().
Work around this by issuing a blanket NOP operation before the SQPOLL
does anything. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: mesh: Fix leak of mesh_preq_queue objects
The hwmp code use objects of type mesh_preq_queue, added to a list in
ieee80211_if_mesh, to keep track of mpath we need to resolve. If the mpath
gets deleted, ex mesh interface is removed, the entries in that list will
never get cleaned. Fix this by flushing all corresponding items of the
preq_queue in mesh_path_flush_pending().
This should take care of KASAN reports like this:
unreferenced object 0xffff00000668d800 (size 128):
comm "kworker/u8:4", pid 67, jiffies 4295419552 (age 1836.444s)
hex dump (first 32 bytes):
00 1f 05 09 00 00 ff ff 00 d5 68 06 00 00 ff ff ..........h.....
8e 97 ea eb 3e b8 01 00 00 00 00 00 00 00 00 00 ....>...........
backtrace:
[<000000007302a0b6>] __kmem_cache_alloc_node+0x1e0/0x35c
[<00000000049bd418>] kmalloc_trace+0x34/0x80
[<0000000000d792bb>] mesh_queue_preq+0x44/0x2a8
[<00000000c99c3696>] mesh_nexthop_resolve+0x198/0x19c
[<00000000926bf598>] ieee80211_xmit+0x1d0/0x1f4
[<00000000fc8c2284>] __ieee80211_subif_start_xmit+0x30c/0x764
[<000000005926ee38>] ieee80211_subif_start_xmit+0x9c/0x7a4
[<000000004c86e916>] dev_hard_start_xmit+0x174/0x440
[<0000000023495647>] __dev_queue_xmit+0xe24/0x111c
[<00000000cfe9ca78>] batadv_send_skb_packet+0x180/0x1e4
[<000000007bacc5d5>] batadv_v_elp_periodic_work+0x2f4/0x508
[<00000000adc3cd94>] process_one_work+0x4b8/0xa1c
[<00000000b36425d1>] worker_thread+0x9c/0x634
[<0000000005852dd5>] kthread+0x1bc/0x1c4
[<000000005fccd770>] ret_from_fork+0x10/0x20
unreferenced object 0xffff000009051f00 (size 128):
comm "kworker/u8:4", pid 67, jiffies 4295419553 (age 1836.440s)
hex dump (first 32 bytes):
90 d6 92 0d 00 00 ff ff 00 d8 68 06 00 00 ff ff ..........h.....
36 27 92 e4 02 e0 01 00 00 58 79 06 00 00 ff ff 6'.......Xy.....
backtrace:
[<000000007302a0b6>] __kmem_cache_alloc_node+0x1e0/0x35c
[<00000000049bd418>] kmalloc_trace+0x34/0x80
[<0000000000d792bb>] mesh_queue_preq+0x44/0x2a8
[<00000000c99c3696>] mesh_nexthop_resolve+0x198/0x19c
[<00000000926bf598>] ieee80211_xmit+0x1d0/0x1f4
[<00000000fc8c2284>] __ieee80211_subif_start_xmit+0x30c/0x764
[<000000005926ee38>] ieee80211_subif_start_xmit+0x9c/0x7a4
[<000000004c86e916>] dev_hard_start_xmit+0x174/0x440
[<0000000023495647>] __dev_queue_xmit+0xe24/0x111c
[<00000000cfe9ca78>] batadv_send_skb_packet+0x180/0x1e4
[<000000007bacc5d5>] batadv_v_elp_periodic_work+0x2f4/0x508
[<00000000adc3cd94>] process_one_work+0x4b8/0xa1c
[<00000000b36425d1>] worker_thread+0x9c/0x634
[<0000000005852dd5>] kthread+0x1bc/0x1c4
[<000000005fccd770>] ret_from_fork+0x10/0x20 |
| In the Linux kernel, the following vulnerability has been resolved:
drm/exynos/vidi: fix memory leak in .get_modes()
The duplicated EDID is never freed. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
vfio/pci: fix potential memory leak in vfio_intx_enable()
If vfio_irq_ctx_alloc() failed will lead to 'name' memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
media: i2c: et8ek8: Don't strip remove function when driver is builtin
Using __exit for the remove function results in the remove callback
being discarded with CONFIG_VIDEO_ET8EK8=y. When such a device gets
unbound (e.g. using sysfs or hotplug), the driver is just removed
without the cleanup being performed. This results in resource leaks. Fix
it by compiling in the remove callback unconditionally.
This also fixes a W=1 modpost warning:
WARNING: modpost: drivers/media/i2c/et8ek8/et8ek8: section mismatch in reference: et8ek8_i2c_driver+0x10 (section: .data) -> et8ek8_remove (section: .exit.text) |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/sme: Always exit sme_alloc() early with existing storage
When sme_alloc() is called with existing storage and we are not flushing we
will always allocate new storage, both leaking the existing storage and
corrupting the state. Fix this by separating the checks for flushing and
for existing storage as we do for SVE.
Callers that reallocate (eg, due to changing the vector length) should
call sme_free() themselves. |