Search Results (674 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-62215 1 Microsoft 13 Windows 10, Windows 10 1809, Windows 10 21h2 and 10 more 2025-11-13 7 High
Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Kernel allows an authorized attacker to elevate privileges locally.
CVE-2025-62219 1 Microsoft 3 Windows, Windows 10, Windows 11 2025-11-13 7 High
Double free in Microsoft Wireless Provisioning System allows an authorized attacker to elevate privileges locally.
CVE-2025-59505 1 Microsoft 9 Windows, Windows 10, Windows 11 and 6 more 2025-11-13 7.8 High
Double free in Windows Smart Card allows an authorized attacker to elevate privileges locally.
CVE-2025-37817 2 Debian, Linux 2 Debian Linux, Linux Kernel 2025-11-12 7.8 High
In the Linux kernel, the following vulnerability has been resolved: mcb: fix a double free bug in chameleon_parse_gdd() In chameleon_parse_gdd(), if mcb_device_register() fails, 'mdev' would be released in mcb_device_register() via put_device(). Thus, goto 'err' label and free 'mdev' again causes a double free. Just return if mcb_device_register() fails.
CVE-2025-5914 2 Libarchive, Redhat 16 Libarchive, Cert Manager, Confidential Compute Attestation and 13 more 2025-11-11 7.3 High
A vulnerability has been identified in the libarchive library, specifically within the archive_read_format_rar_seek_data() function. This flaw involves an integer overflow that can ultimately lead to a double-free condition. Exploiting a double-free vulnerability can result in memory corruption, enabling an attacker to execute arbitrary code or cause a denial-of-service condition.
CVE-2025-32988 2 Gnu, Redhat 8 Gnutls, Discovery, Enterprise Linux and 5 more 2025-11-11 6.5 Medium
A flaw was found in GnuTLS. A double-free vulnerability exists in GnuTLS due to incorrect ownership handling in the export logic of Subject Alternative Name (SAN) entries containing an otherName. If the type-id OID is invalid or malformed, GnuTLS will call asn1_delete_structure() on an ASN.1 node it does not own, leading to a double-free condition when the parent function or caller later attempts to free the same structure. This vulnerability can be triggered using only public GnuTLS APIs and may result in denial of service or memory corruption, depending on allocator behavior.
CVE-2022-49900 1 Linux 1 Linux Kernel 2025-11-10 7.8 High
In the Linux kernel, the following vulnerability has been resolved: i2c: piix4: Fix adapter not be removed in piix4_remove() In piix4_probe(), the piix4 adapter will be registered in: piix4_probe() piix4_add_adapters_sb800() / piix4_add_adapter() i2c_add_adapter() Based on the probed device type, piix4_add_adapters_sb800() or single piix4_add_adapter() will be called. For the former case, piix4_adapter_count is set as the number of adapters, while for antoher case it is not set and kept default *zero*. When piix4 is removed, piix4_remove() removes the adapters added in piix4_probe(), basing on the piix4_adapter_count value. Because the count is zero for the single adapter case, the adapter won't be removed and makes the sources allocated for adapter leaked, such as the i2c client and device. These sources can still be accessed by i2c or bus and cause problems. An easily reproduced case is that if a new adapter is registered, i2c will get the leaked adapter and try to call smbus_algorithm, which was already freed: Triggered by: rmmod i2c_piix4 && modprobe max31730 BUG: unable to handle page fault for address: ffffffffc053d860 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page Oops: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 3752 Comm: modprobe Tainted: G Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) RIP: 0010:i2c_default_probe (drivers/i2c/i2c-core-base.c:2259) i2c_core RSP: 0018:ffff888107477710 EFLAGS: 00000246 ... <TASK> i2c_detect (drivers/i2c/i2c-core-base.c:2302) i2c_core __process_new_driver (drivers/i2c/i2c-core-base.c:1336) i2c_core bus_for_each_dev (drivers/base/bus.c:301) i2c_for_each_dev (drivers/i2c/i2c-core-base.c:1823) i2c_core i2c_register_driver (drivers/i2c/i2c-core-base.c:1861) i2c_core do_one_initcall (init/main.c:1296) do_init_module (kernel/module/main.c:2455) ... </TASK> ---[ end trace 0000000000000000 ]--- Fix this problem by correctly set piix4_adapter_count as 1 for the single adapter so it can be normally removed.
CVE-2022-49826 1 Linux 1 Linux Kernel 2025-11-10 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ata: libata-transport: fix double ata_host_put() in ata_tport_add() In the error path in ata_tport_add(), when calling put_device(), ata_tport_release() is called, it will put the refcount of 'ap->host'. And then ata_host_put() is called again, the refcount is decreased to 0, ata_host_release() is called, all ports are freed and set to null. When unbinding the device after failure, ata_host_stop() is called to release the resources, it leads a null-ptr-deref(), because all the ports all freed and null. Unable to handle kernel NULL pointer dereference at virtual address 0000000000000008 CPU: 7 PID: 18671 Comm: modprobe Kdump: loaded Tainted: G E 6.1.0-rc3+ #8 pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : ata_host_stop+0x3c/0x84 [libata] lr : release_nodes+0x64/0xd0 Call trace: ata_host_stop+0x3c/0x84 [libata] release_nodes+0x64/0xd0 devres_release_all+0xbc/0x1b0 device_unbind_cleanup+0x20/0x70 really_probe+0x158/0x320 __driver_probe_device+0x84/0x120 driver_probe_device+0x44/0x120 __driver_attach+0xb4/0x220 bus_for_each_dev+0x78/0xdc driver_attach+0x2c/0x40 bus_add_driver+0x184/0x240 driver_register+0x80/0x13c __pci_register_driver+0x4c/0x60 ahci_pci_driver_init+0x30/0x1000 [ahci] Fix this by removing redundant ata_host_put() in the error path.
CVE-2025-50169 1 Microsoft 5 Server, Windows, Windows 11 24h2 and 2 more 2025-11-10 7.5 High
Concurrent execution using shared resource with improper synchronization ('race condition') in Windows SMB allows an unauthorized attacker to execute code over a network.
CVE-2022-49789 1 Linux 1 Linux Kernel 2025-11-07 7.8 High
In the Linux kernel, the following vulnerability has been resolved: scsi: zfcp: Fix double free of FSF request when qdio send fails We used to use the wrong type of integer in 'zfcp_fsf_req_send()' to cache the FSF request ID when sending a new FSF request. This is used in case the sending fails and we need to remove the request from our internal hash table again (so we don't keep an invalid reference and use it when we free the request again). In 'zfcp_fsf_req_send()' we used to cache the ID as 'int' (signed and 32 bit wide), but the rest of the zfcp code (and the firmware specification) handles the ID as 'unsigned long'/'u64' (unsigned and 64 bit wide [s390x ELF ABI]). For one this has the obvious problem that when the ID grows past 32 bit (this can happen reasonably fast) it is truncated to 32 bit when storing it in the cache variable and so doesn't match the original ID anymore. The second less obvious problem is that even when the original ID has not yet grown past 32 bit, as soon as the 32nd bit is set in the original ID (0x80000000 = 2'147'483'648) we will have a mismatch when we cast it back to 'unsigned long'. As the cached variable is of a signed type, the compiler will choose a sign-extending instruction to load the 32 bit variable into a 64 bit register (e.g.: 'lgf %r11,188(%r15)'). So once we pass the cached variable into 'zfcp_reqlist_find_rm()' to remove the request again all the leading zeros will be flipped to ones to extend the sign and won't match the original ID anymore (this has been observed in practice). If we can't successfully remove the request from the hash table again after 'zfcp_qdio_send()' fails (this happens regularly when zfcp cannot notify the adapter about new work because the adapter is already gone during e.g. a ChpID toggle) we will end up with a double free. We unconditionally free the request in the calling function when 'zfcp_fsf_req_send()' fails, but because the request is still in the hash table we end up with a stale memory reference, and once the zfcp adapter is either reset during recovery or shutdown we end up freeing the same memory twice. The resulting stack traces vary depending on the kernel and have no direct correlation to the place where the bug occurs. Here are three examples that have been seen in practice: list_del corruption. next->prev should be 00000001b9d13800, but was 00000000dead4ead. (next=00000001bd131a00) ------------[ cut here ]------------ kernel BUG at lib/list_debug.c:62! monitor event: 0040 ilc:2 [#1] PREEMPT SMP Modules linked in: ... CPU: 9 PID: 1617 Comm: zfcperp0.0.1740 Kdump: loaded Hardware name: ... Krnl PSW : 0704d00180000000 00000003cbeea1f8 (__list_del_entry_valid+0x98/0x140) R:0 T:1 IO:1 EX:1 Key:0 M:1 W:0 P:0 AS:3 CC:1 PM:0 RI:0 EA:3 Krnl GPRS: 00000000916d12f1 0000000080000000 000000000000006d 00000003cb665cd6 0000000000000001 0000000000000000 0000000000000000 00000000d28d21e8 00000000d3844000 00000380099efd28 00000001bd131a00 00000001b9d13800 00000000d3290100 0000000000000000 00000003cbeea1f4 00000380099efc70 Krnl Code: 00000003cbeea1e8: c020004f68a7 larl %r2,00000003cc8d7336 00000003cbeea1ee: c0e50027fd65 brasl %r14,00000003cc3e9cb8 #00000003cbeea1f4: af000000 mc 0,0 >00000003cbeea1f8: c02000920440 larl %r2,00000003cd12aa78 00000003cbeea1fe: c0e500289c25 brasl %r14,00000003cc3fda48 00000003cbeea204: b9040043 lgr %r4,%r3 00000003cbeea208: b9040051 lgr %r5,%r1 00000003cbeea20c: b9040032 lgr %r3,%r2 Call Trace: [<00000003cbeea1f8>] __list_del_entry_valid+0x98/0x140 ([<00000003cbeea1f4>] __list_del_entry_valid+0x94/0x140) [<000003ff7ff502fe>] zfcp_fsf_req_dismiss_all+0xde/0x150 [zfcp] [<000003ff7ff49cd0>] zfcp_erp_strategy_do_action+0x160/0x280 [zfcp] ---truncated---
CVE-2022-49775 1 Linux 2 Linux, Linux Kernel 2025-11-07 7.8 High
In the Linux kernel, the following vulnerability has been resolved: tcp: cdg: allow tcp_cdg_release() to be called multiple times Apparently, mptcp is able to call tcp_disconnect() on an already disconnected flow. This is generally fine, unless current congestion control is CDG, because it might trigger a double-free [1] Instead of fixing MPTCP, and future bugs, we can make tcp_disconnect() more resilient. [1] BUG: KASAN: double-free in slab_free mm/slub.c:3539 [inline] BUG: KASAN: double-free in kfree+0xe2/0x580 mm/slub.c:4567 CPU: 0 PID: 3645 Comm: kworker/0:7 Not tainted 6.0.0-syzkaller-02734-g0326074ff465 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/22/2022 Workqueue: events mptcp_worker Call Trace: <TASK> __dump_stack lib/dump_stack.c:88 [inline] dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106 print_address_description mm/kasan/report.c:317 [inline] print_report.cold+0x2ba/0x719 mm/kasan/report.c:433 kasan_report_invalid_free+0x81/0x190 mm/kasan/report.c:462 ____kasan_slab_free+0x18b/0x1c0 mm/kasan/common.c:356 kasan_slab_free include/linux/kasan.h:200 [inline] slab_free_hook mm/slub.c:1759 [inline] slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1785 slab_free mm/slub.c:3539 [inline] kfree+0xe2/0x580 mm/slub.c:4567 tcp_disconnect+0x980/0x1e20 net/ipv4/tcp.c:3145 __mptcp_close_ssk+0x5ca/0x7e0 net/mptcp/protocol.c:2327 mptcp_do_fastclose net/mptcp/protocol.c:2592 [inline] mptcp_worker+0x78c/0xff0 net/mptcp/protocol.c:2627 process_one_work+0x991/0x1610 kernel/workqueue.c:2289 worker_thread+0x665/0x1080 kernel/workqueue.c:2436 kthread+0x2e4/0x3a0 kernel/kthread.c:376 ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:306 </TASK> Allocated by task 3671: kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38 kasan_set_track mm/kasan/common.c:45 [inline] set_alloc_info mm/kasan/common.c:437 [inline] ____kasan_kmalloc mm/kasan/common.c:516 [inline] ____kasan_kmalloc mm/kasan/common.c:475 [inline] __kasan_kmalloc+0xa9/0xd0 mm/kasan/common.c:525 kmalloc_array include/linux/slab.h:640 [inline] kcalloc include/linux/slab.h:671 [inline] tcp_cdg_init+0x10d/0x170 net/ipv4/tcp_cdg.c:380 tcp_init_congestion_control+0xab/0x550 net/ipv4/tcp_cong.c:193 tcp_reinit_congestion_control net/ipv4/tcp_cong.c:217 [inline] tcp_set_congestion_control+0x96c/0xaa0 net/ipv4/tcp_cong.c:391 do_tcp_setsockopt+0x505/0x2320 net/ipv4/tcp.c:3513 tcp_setsockopt+0xd4/0x100 net/ipv4/tcp.c:3801 mptcp_setsockopt+0x35f/0x2570 net/mptcp/sockopt.c:844 __sys_setsockopt+0x2d6/0x690 net/socket.c:2252 __do_sys_setsockopt net/socket.c:2263 [inline] __se_sys_setsockopt net/socket.c:2260 [inline] __x64_sys_setsockopt+0xba/0x150 net/socket.c:2260 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd Freed by task 16: kasan_save_stack+0x1e/0x40 mm/kasan/common.c:38 kasan_set_track+0x21/0x30 mm/kasan/common.c:45 kasan_set_free_info+0x20/0x30 mm/kasan/generic.c:370 ____kasan_slab_free mm/kasan/common.c:367 [inline] ____kasan_slab_free+0x166/0x1c0 mm/kasan/common.c:329 kasan_slab_free include/linux/kasan.h:200 [inline] slab_free_hook mm/slub.c:1759 [inline] slab_free_freelist_hook+0x8b/0x1c0 mm/slub.c:1785 slab_free mm/slub.c:3539 [inline] kfree+0xe2/0x580 mm/slub.c:4567 tcp_cleanup_congestion_control+0x70/0x120 net/ipv4/tcp_cong.c:226 tcp_v4_destroy_sock+0xdd/0x750 net/ipv4/tcp_ipv4.c:2254 tcp_v6_destroy_sock+0x11/0x20 net/ipv6/tcp_ipv6.c:1969 inet_csk_destroy_sock+0x196/0x440 net/ipv4/inet_connection_sock.c:1157 tcp_done+0x23b/0x340 net/ipv4/tcp.c:4649 tcp_rcv_state_process+0x40e7/0x4990 net/ipv4/tcp_input.c:6624 tcp_v6_do_rcv+0x3fc/0x13c0 net/ipv6/tcp_ipv6.c:1525 tcp_v6_rcv+0x2e8e/0x3830 net/ipv6/tcp_ipv6.c:1759 ip6_protocol_deliver_rcu+0x2db/0x1950 net/ipv6/ip6_input.c:439 ip6_input_finish+0x14c/0x2c0 net/ipv6/ip6_input.c:484 NF_HOOK include/linux/netfilter.h:302 [inline] NF_HOOK include/linux/netfilter.h:296 [inline] ip6_input+0x9c/0xd ---truncated---
CVE-2023-33952 2 Linux, Redhat 5 Linux Kernel, Enterprise Linux, Enterprise Linux For Real Time and 2 more 2025-11-07 6.7 Medium
A double-free vulnerability was found in handling vmw_buffer_object objects in the vmwgfx driver in the Linux kernel. This issue occurs due to the lack of validating the existence of an object prior to performing further free operations on the object, which may allow a local privileged user to escalate privileges and execute code in the context of the kernel.
CVE-2023-5178 3 Linux, Netapp, Redhat 10 Linux Kernel, Active Iq Unified Manager, Solidfire \& Hci Management Node and 7 more 2025-11-06 8.8 High
A use-after-free vulnerability was found in drivers/nvme/target/tcp.c` in `nvmet_tcp_free_crypto` due to a logical bug in the NVMe/TCP subsystem in the Linux kernel. This issue may allow a malicious user to cause a use-after-free and double-free problem, which may permit remote code execution or lead to local privilege escalation.
CVE-2025-37779 1 Linux 1 Linux Kernel 2025-11-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: lib/iov_iter: fix to increase non slab folio refcount When testing EROFS file-backed mount over v9fs on qemu, I encountered a folio UAF issue. The page sanity check reports the following call trace. The root cause is that pages in bvec are coalesced across a folio bounary. The refcount of all non-slab folios should be increased to ensure p9_releas_pages can put them correctly. BUG: Bad page state in process md5sum pfn:18300 page: refcount:0 mapcount:0 mapping:00000000d5ad8e4e index:0x60 pfn:0x18300 head: order:0 mapcount:0 entire_mapcount:0 nr_pages_mapped:0 pincount:0 aops:z_erofs_aops ino:30b0f dentry name(?):"GoogleExtServicesCn.apk" flags: 0x100000000000041(locked|head|node=0|zone=1) raw: 0100000000000041 dead000000000100 dead000000000122 ffff888014b13bd0 raw: 0000000000000060 0000000000000020 00000000ffffffff 0000000000000000 head: 0100000000000041 dead000000000100 dead000000000122 ffff888014b13bd0 head: 0000000000000060 0000000000000020 00000000ffffffff 0000000000000000 head: 0100000000000000 0000000000000000 ffffffffffffffff 0000000000000000 head: 0000000000000010 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: PAGE_FLAGS_CHECK_AT_FREE flag(s) set Call Trace: dump_stack_lvl+0x53/0x70 bad_page+0xd4/0x220 __free_pages_ok+0x76d/0xf30 __folio_put+0x230/0x320 p9_release_pages+0x179/0x1f0 p9_virtio_zc_request+0xa2a/0x1230 p9_client_zc_rpc.constprop.0+0x247/0x700 p9_client_read_once+0x34d/0x810 p9_client_read+0xf3/0x150 v9fs_issue_read+0x111/0x360 netfs_unbuffered_read_iter_locked+0x927/0x1390 netfs_unbuffered_read_iter+0xa2/0xe0 vfs_iocb_iter_read+0x2c7/0x460 erofs_fileio_rq_submit+0x46b/0x5b0 z_erofs_runqueue+0x1203/0x21e0 z_erofs_readahead+0x579/0x8b0 read_pages+0x19f/0xa70 page_cache_ra_order+0x4ad/0xb80 filemap_readahead.isra.0+0xe7/0x150 filemap_get_pages+0x7aa/0x1890 filemap_read+0x320/0xc80 vfs_read+0x6c6/0xa30 ksys_read+0xf9/0x1c0 do_syscall_64+0x9e/0x1a0 entry_SYSCALL_64_after_hwframe+0x71/0x79
CVE-2025-8058 1 Gnu 1 Glibc 2025-11-04 4.2 Medium
The regcomp function in the GNU C library version from 2.4 to 2.41 is subject to a double free if some previous allocation fails. It can be accomplished either by a malloc failure or by using an interposed malloc that injects random malloc failures. The double free can allow buffer manipulation depending of how the regex is constructed. This issue affects all architectures and ABIs supported by the GNU C library.
CVE-2022-4450 3 Openssl, Redhat, Stormshield 6 Openssl, Enterprise Linux, Jboss Core Services and 3 more 2025-11-04 7.5 High
The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data. If the function succeeds then the "name_out", "header" and "data" arguments are populated with pointers to buffers containing the relevant decoded data. The caller is responsible for freeing those buffers. It is possible to construct a PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex() will return a failure code but will populate the header argument with a pointer to a buffer that has already been freed. If the caller also frees this buffer then a double free will occur. This will most likely lead to a crash. This could be exploited by an attacker who has the ability to supply malicious PEM files for parsing to achieve a denial of service attack. The functions PEM_read_bio() and PEM_read() are simple wrappers around PEM_read_bio_ex() and therefore these functions are also directly affected. These functions are also called indirectly by a number of other OpenSSL functions including PEM_X509_INFO_read_bio_ex() and SSL_CTX_use_serverinfo_file() which are also vulnerable. Some OpenSSL internal uses of these functions are not vulnerable because the caller does not free the header argument if PEM_read_bio_ex() returns a failure code. These locations include the PEM_read_bio_TYPE() functions as well as the decoders introduced in OpenSSL 3.0. The OpenSSL asn1parse command line application is also impacted by this issue.
CVE-2025-59289 1 Microsoft 13 Windows, Windows 10, Windows 10 21h2 and 10 more 2025-11-04 7 High
Double free in Windows Bluetooth Service allows an authorized attacker to elevate privileges locally.
CVE-2024-23809 3 Fedoraproject, Libbiosig Project, The Biosig Project 3 Fedora, Libbiosig, Libbiosig 2025-11-04 9.8 Critical
A double-free vulnerability exists in the BrainVision ASCII Header Parsing functionality of The Biosig Project libbiosig 2.5.0 and Master Branch (ab0ee111). A specially crafted .vdhr file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
CVE-2024-22097 3 Fedoraproject, Libbiosig Project, The Biosig Project 3 Fedora, Libbiosig, Libbiosig 2025-11-04 9.8 Critical
A double-free vulnerability exists in the BrainVision Header Parsing functionality of The Biosig Project libbiosig Master Branch (ab0ee111) and 2.5.0. A specially crafted .vdhr file can lead to arbitrary code execution. An attacker can provide a malicious file to trigger this vulnerability.
CVE-2023-49937 1 Schedmd 1 Slurm 2025-11-04 9.8 Critical
An issue was discovered in SchedMD Slurm 22.05.x, 23.02.x, and 23.11.x. Because of a double free, attackers can cause a denial of service or possibly execute arbitrary code. The fixed versions are 22.05.11, 23.02.7, and 23.11.1.