| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A flaw has been found in omec-project UPF up to 2.1.3-dev. This affects the function handleSessionEstablishmentRequest of the file /pfcpiface/pfcpiface/messages_session.go of the component PFCP Session Establishment Request Handler. This manipulation causes null pointer dereference. The attack may be initiated remotely. The exploit has been published and may be used. The project was informed of the problem early through an issue report but has not responded yet. |
| In PHP versions 8.1.* before 8.1.34, 8.2.* before 8.2.30, 8.3.* before 8.3.29, 8.4.* before 8.4.16, 8.5.* before 8.5.1 when using the PDO PostgreSQL driver with PDO::ATTR_EMULATE_PREPARES enabled, an invalid character sequence (such as \x99) in a prepared statement parameter may cause the quoting function PQescapeStringConn to return NULL, leading to a null pointer dereference in pdo_parse_params() function. This may lead to crashes (segmentation fault) and affect the availability of the target server. |
| A flaw has been found in Open5GS up to 2.7.5. This impacts the function ogs_pfcp_handle_create_pdr in the library lib/pfcp/handler.c of the component FAR-ID Handler. Executing manipulation can lead to null pointer dereference. The attack may be performed from remote. The attack requires a high level of complexity. The exploitability is said to be difficult. The exploit has been published and may be used. This patch is called 93a9fd98a8baa94289be3b982028201de4534e32. It is advisable to implement a patch to correct this issue. |
| Sante PACS Server HTTP Content-Length Header Handling NULL Pointer Dereference Denial-of-Service Vulnerability. This vulnerability allows remote attackers to create a denial-of-service condition on affected installations of Sante PACS Server. Authentication is not required to exploit this vulnerability.
The specific flaw exists within the handling of HTTP Content-Length header. The issue results from the lack of proper validation of a pointer prior to accessing it. An attacker can leverage this vulnerability to create a denial-of-service condition on the system. Was ZDI-CAN-26770. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: target: Fix NULL pointer dereference in core_scsi3_decode_spec_i_port()
The function core_scsi3_decode_spec_i_port(), in its error code path,
unconditionally calls core_scsi3_lunacl_undepend_item() passing the
dest_se_deve pointer, which may be NULL.
This can lead to a NULL pointer dereference if dest_se_deve remains
unset.
SPC-3 PR SPEC_I_PT: Unable to locate dest_tpg
Unable to handle kernel paging request at virtual address dfff800000000012
Call trace:
core_scsi3_lunacl_undepend_item+0x2c/0xf0 [target_core_mod] (P)
core_scsi3_decode_spec_i_port+0x120c/0x1c30 [target_core_mod]
core_scsi3_emulate_pro_register+0x6b8/0xcd8 [target_core_mod]
target_scsi3_emulate_pr_out+0x56c/0x840 [target_core_mod]
Fix this by adding a NULL check before calling
core_scsi3_lunacl_undepend_item() |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: vgic-v2: Check for non-NULL vCPU in vgic_v2_parse_attr()
vgic_v2_parse_attr() is responsible for finding the vCPU that matches
the user-provided CPUID, which (of course) may not be valid. If the ID
is invalid, kvm_get_vcpu_by_id() returns NULL, which isn't handled
gracefully.
Similar to the GICv3 uaccess flow, check that kvm_get_vcpu_by_id()
actually returns something and fail the ioctl if not. |
| In the Linux kernel, the following vulnerability has been resolved:
dm: call the resume method on internal suspend
There is this reported crash when experimenting with the lvm2 testsuite.
The list corruption is caused by the fact that the postsuspend and resume
methods were not paired correctly; there were two consecutive calls to the
origin_postsuspend function. The second call attempts to remove the
"hash_list" entry from a list, while it was already removed by the first
call.
Fix __dm_internal_resume so that it calls the preresume and resume
methods of the table's targets.
If a preresume method of some target fails, we are in a tricky situation.
We can't return an error because dm_internal_resume isn't supposed to
return errors. We can't return success, because then the "resume" and
"postsuspend" methods would not be paired correctly. So, we set the
DMF_SUSPENDED flag and we fake normal suspend - it may confuse userspace
tools, but it won't cause a kernel crash.
------------[ cut here ]------------
kernel BUG at lib/list_debug.c:56!
invalid opcode: 0000 [#1] PREEMPT SMP
CPU: 1 PID: 8343 Comm: dmsetup Not tainted 6.8.0-rc6 #4
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
RIP: 0010:__list_del_entry_valid_or_report+0x77/0xc0
<snip>
RSP: 0018:ffff8881b831bcc0 EFLAGS: 00010282
RAX: 000000000000004e RBX: ffff888143b6eb80 RCX: 0000000000000000
RDX: 0000000000000001 RSI: ffffffff819053d0 RDI: 00000000ffffffff
RBP: ffff8881b83a3400 R08: 00000000fffeffff R09: 0000000000000058
R10: 0000000000000000 R11: ffffffff81a24080 R12: 0000000000000001
R13: ffff88814538e000 R14: ffff888143bc6dc0 R15: ffffffffa02e4bb0
FS: 00000000f7c0f780(0000) GS:ffff8893f0a40000(0000) knlGS:0000000000000000
CS: 0010 DS: 002b ES: 002b CR0: 0000000080050033
CR2: 0000000057fb5000 CR3: 0000000143474000 CR4: 00000000000006b0
Call Trace:
<TASK>
? die+0x2d/0x80
? do_trap+0xeb/0xf0
? __list_del_entry_valid_or_report+0x77/0xc0
? do_error_trap+0x60/0x80
? __list_del_entry_valid_or_report+0x77/0xc0
? exc_invalid_op+0x49/0x60
? __list_del_entry_valid_or_report+0x77/0xc0
? asm_exc_invalid_op+0x16/0x20
? table_deps+0x1b0/0x1b0 [dm_mod]
? __list_del_entry_valid_or_report+0x77/0xc0
origin_postsuspend+0x1a/0x50 [dm_snapshot]
dm_table_postsuspend_targets+0x34/0x50 [dm_mod]
dm_suspend+0xd8/0xf0 [dm_mod]
dev_suspend+0x1f2/0x2f0 [dm_mod]
? table_deps+0x1b0/0x1b0 [dm_mod]
ctl_ioctl+0x300/0x5f0 [dm_mod]
dm_compat_ctl_ioctl+0x7/0x10 [dm_mod]
__x64_compat_sys_ioctl+0x104/0x170
do_syscall_64+0x184/0x1b0
entry_SYSCALL_64_after_hwframe+0x46/0x4e
RIP: 0033:0xf7e6aead
<snip>
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: carl9170: do not ping device which has failed to load firmware
Syzkaller reports [1, 2] crashes caused by an attempts to ping
the device which has failed to load firmware. Since such a device
doesn't pass 'ieee80211_register_hw()', an internal workqueue
managed by 'ieee80211_queue_work()' is not yet created and an
attempt to queue work on it causes null-ptr-deref.
[1] https://syzkaller.appspot.com/bug?extid=9a4aec827829942045ff
[2] https://syzkaller.appspot.com/bug?extid=0d8afba53e8fb2633217 |
| Null pointer dereference in Windows DirectX allows an authorized attacker to deny service locally. |
| Null pointer dereference in Windows DirectX allows an authorized attacker to deny service locally. |
| Null pointer dereference in Windows Client-Side Caching (CSC) Service allows an authorized attacker to elevate privileges locally. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ll_temac: platform_get_resource replaced by wrong function
The function platform_get_resource was replaced with
devm_platform_ioremap_resource_byname and is called using 0 as name.
This eventually ends up in platform_get_resource_byname in the call
stack, where it causes a null pointer in strcmp.
if (type == resource_type(r) && !strcmp(r->name, name))
It should have been replaced with devm_platform_ioremap_resource. |
| In the Linux kernel, the following vulnerability has been resolved:
net: If sock is dead don't access sock's sk_wq in sk_stream_wait_memory
Fixes the below NULL pointer dereference:
[...]
[ 14.471200] Call Trace:
[ 14.471562] <TASK>
[ 14.471882] lock_acquire+0x245/0x2e0
[ 14.472416] ? remove_wait_queue+0x12/0x50
[ 14.473014] ? _raw_spin_lock_irqsave+0x17/0x50
[ 14.473681] _raw_spin_lock_irqsave+0x3d/0x50
[ 14.474318] ? remove_wait_queue+0x12/0x50
[ 14.474907] remove_wait_queue+0x12/0x50
[ 14.475480] sk_stream_wait_memory+0x20d/0x340
[ 14.476127] ? do_wait_intr_irq+0x80/0x80
[ 14.476704] do_tcp_sendpages+0x287/0x600
[ 14.477283] tcp_bpf_push+0xab/0x260
[ 14.477817] tcp_bpf_sendmsg_redir+0x297/0x500
[ 14.478461] ? __local_bh_enable_ip+0x77/0xe0
[ 14.479096] tcp_bpf_send_verdict+0x105/0x470
[ 14.479729] tcp_bpf_sendmsg+0x318/0x4f0
[ 14.480311] sock_sendmsg+0x2d/0x40
[ 14.480822] ____sys_sendmsg+0x1b4/0x1c0
[ 14.481390] ? copy_msghdr_from_user+0x62/0x80
[ 14.482048] ___sys_sendmsg+0x78/0xb0
[ 14.482580] ? vmf_insert_pfn_prot+0x91/0x150
[ 14.483215] ? __do_fault+0x2a/0x1a0
[ 14.483738] ? do_fault+0x15e/0x5d0
[ 14.484246] ? __handle_mm_fault+0x56b/0x1040
[ 14.484874] ? lock_is_held_type+0xdf/0x130
[ 14.485474] ? find_held_lock+0x2d/0x90
[ 14.486046] ? __sys_sendmsg+0x41/0x70
[ 14.486587] __sys_sendmsg+0x41/0x70
[ 14.487105] ? intel_pmu_drain_pebs_core+0x350/0x350
[ 14.487822] do_syscall_64+0x34/0x80
[ 14.488345] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...]
The test scenario has the following flow:
thread1 thread2
----------- ---------------
tcp_bpf_sendmsg
tcp_bpf_send_verdict
tcp_bpf_sendmsg_redir sock_close
tcp_bpf_push_locked __sock_release
tcp_bpf_push //inet_release
do_tcp_sendpages sock->ops->release
sk_stream_wait_memory // tcp_close
sk_wait_event sk->sk_prot->close
release_sock(__sk);
***
lock_sock(sk);
__tcp_close
sock_orphan(sk)
sk->sk_wq = NULL
release_sock
****
lock_sock(__sk);
remove_wait_queue(sk_sleep(sk), &wait);
sk_sleep(sk)
//NULL pointer dereference
&rcu_dereference_raw(sk->sk_wq)->wait
While waiting for memory in thread1, the socket is released with its wait
queue because thread2 has closed it. This caused by tcp_bpf_send_verdict
didn't increase the f_count of psock->sk_redir->sk_socket->file in thread1.
We should check if SOCK_DEAD flag is set on wakeup in sk_stream_wait_memory
before accessing the wait queue. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/vrr: Set VRR capable prop only if it is attached to connector
VRR capable property is not attached by default to the connector
It is attached only if VRR is supported.
So if the driver tries to call drm core set prop function without
it being attached that causes NULL dereference. |
| A NULL pointer dereference in the ADTSAudioFileServerMediaSubsession::createNewRTPSink() function of Live555 Streaming Media v2018.09.02 allows attackers to cause a Denial of Service (DoS) via supplying a crafted ADTS file. |
| In the Linux kernel, the following vulnerability has been resolved:
md: fix a crash in mempool_free
There's a crash in mempool_free when running the lvm test
shell/lvchange-rebuild-raid.sh.
The reason for the crash is this:
* super_written calls atomic_dec_and_test(&mddev->pending_writes) and
wake_up(&mddev->sb_wait). Then it calls rdev_dec_pending(rdev, mddev)
and bio_put(bio).
* so, the process that waited on sb_wait and that is woken up is racing
with bio_put(bio).
* if the process wins the race, it calls bioset_exit before bio_put(bio)
is executed.
* bio_put(bio) attempts to free a bio into a destroyed bio set - causing
a crash in mempool_free.
We fix this bug by moving bio_put before atomic_dec_and_test.
We also move rdev_dec_pending before atomic_dec_and_test as suggested by
Neil Brown.
The function md_end_flush has a similar bug - we must call bio_put before
we decrement the number of in-progress bios.
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor write access in kernel mode
#PF: error_code(0x0002) - not-present page
PGD 11557f0067 P4D 11557f0067 PUD 0
Oops: 0002 [#1] PREEMPT SMP
CPU: 0 PID: 73 Comm: kworker/0:1 Not tainted 6.1.0-rc3 #5
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-2 04/01/2014
Workqueue: kdelayd flush_expired_bios [dm_delay]
RIP: 0010:mempool_free+0x47/0x80
Code: 48 89 ef 5b 5d ff e0 f3 c3 48 89 f7 e8 32 45 3f 00 48 63 53 08 48 89 c6 3b 53 04 7d 2d 48 8b 43 10 8d 4a 01 48 89 df 89 4b 08 <48> 89 2c d0 e8 b0 45 3f 00 48 8d 7b 30 5b 5d 31 c9 ba 01 00 00 00
RSP: 0018:ffff88910036bda8 EFLAGS: 00010093
RAX: 0000000000000000 RBX: ffff8891037b65d8 RCX: 0000000000000001
RDX: 0000000000000000 RSI: 0000000000000202 RDI: ffff8891037b65d8
RBP: ffff8891447ba240 R08: 0000000000012908 R09: 00000000003d0900
R10: 0000000000000000 R11: 0000000000173544 R12: ffff889101a14000
R13: ffff8891562ac300 R14: ffff889102b41440 R15: ffffe8ffffa00d05
FS: 0000000000000000(0000) GS:ffff88942fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000001102e99000 CR4: 00000000000006b0
Call Trace:
<TASK>
clone_endio+0xf4/0x1c0 [dm_mod]
clone_endio+0xf4/0x1c0 [dm_mod]
__submit_bio+0x76/0x120
submit_bio_noacct_nocheck+0xb6/0x2a0
flush_expired_bios+0x28/0x2f [dm_delay]
process_one_work+0x1b4/0x300
worker_thread+0x45/0x3e0
? rescuer_thread+0x380/0x380
kthread+0xc2/0x100
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
</TASK>
Modules linked in: brd dm_delay dm_raid dm_mod af_packet uvesafb cfbfillrect cfbimgblt cn cfbcopyarea fb font fbdev tun autofs4 binfmt_misc configfs ipv6 virtio_rng virtio_balloon rng_core virtio_net pcspkr net_failover failover qemu_fw_cfg button mousedev raid10 raid456 libcrc32c async_raid6_recov async_memcpy async_pq raid6_pq async_xor xor async_tx raid1 raid0 md_mod sd_mod t10_pi crc64_rocksoft crc64 virtio_scsi scsi_mod evdev psmouse bsg scsi_common [last unloaded: brd]
CR2: 0000000000000000
---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
media: cx88: Fix a null-ptr-deref bug in buffer_prepare()
When the driver calls cx88_risc_buffer() to prepare the buffer, the
function call may fail, resulting in a empty buffer and null-ptr-deref
later in buffer_queue().
The following log can reveal it:
[ 41.822762] general protection fault, probably for non-canonical address 0xdffffc0000000000: 0000 [#1] PREEMPT SMP KASAN PTI
[ 41.824488] KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
[ 41.828027] RIP: 0010:buffer_queue+0xc2/0x500
[ 41.836311] Call Trace:
[ 41.836945] __enqueue_in_driver+0x141/0x360
[ 41.837262] vb2_start_streaming+0x62/0x4a0
[ 41.838216] vb2_core_streamon+0x1da/0x2c0
[ 41.838516] __vb2_init_fileio+0x981/0xbc0
[ 41.839141] __vb2_perform_fileio+0xbf9/0x1120
[ 41.840072] vb2_fop_read+0x20e/0x400
[ 41.840346] v4l2_read+0x215/0x290
[ 41.840603] vfs_read+0x162/0x4c0
Fix this by checking the return value of cx88_risc_buffer()
[hverkuil: fix coding style issues] |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix null-ptr-deref in ext4_write_info
I caught a null-ptr-deref bug as follows:
==================================================================
KASAN: null-ptr-deref in range [0x0000000000000068-0x000000000000006f]
CPU: 1 PID: 1589 Comm: umount Not tainted 5.10.0-02219-dirty #339
RIP: 0010:ext4_write_info+0x53/0x1b0
[...]
Call Trace:
dquot_writeback_dquots+0x341/0x9a0
ext4_sync_fs+0x19e/0x800
__sync_filesystem+0x83/0x100
sync_filesystem+0x89/0xf0
generic_shutdown_super+0x79/0x3e0
kill_block_super+0xa1/0x110
deactivate_locked_super+0xac/0x130
deactivate_super+0xb6/0xd0
cleanup_mnt+0x289/0x400
__cleanup_mnt+0x16/0x20
task_work_run+0x11c/0x1c0
exit_to_user_mode_prepare+0x203/0x210
syscall_exit_to_user_mode+0x5b/0x3a0
do_syscall_64+0x59/0x70
entry_SYSCALL_64_after_hwframe+0x44/0xa9
==================================================================
Above issue may happen as follows:
-------------------------------------
exit_to_user_mode_prepare
task_work_run
__cleanup_mnt
cleanup_mnt
deactivate_super
deactivate_locked_super
kill_block_super
generic_shutdown_super
shrink_dcache_for_umount
dentry = sb->s_root
sb->s_root = NULL <--- Here set NULL
sync_filesystem
__sync_filesystem
sb->s_op->sync_fs > ext4_sync_fs
dquot_writeback_dquots
sb->dq_op->write_info > ext4_write_info
ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2)
d_inode(sb->s_root)
s_root->d_inode <--- Null pointer dereference
To solve this problem, we use ext4_journal_start_sb directly
to avoid s_root being used. |
| In the Linux kernel, the following vulnerability has been resolved:
hugetlbfs: fix null-ptr-deref in hugetlbfs_parse_param()
Syzkaller reports a null-ptr-deref bug as follows:
======================================================
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
RIP: 0010:hugetlbfs_parse_param+0x1dd/0x8e0 fs/hugetlbfs/inode.c:1380
[...]
Call Trace:
<TASK>
vfs_parse_fs_param fs/fs_context.c:148 [inline]
vfs_parse_fs_param+0x1f9/0x3c0 fs/fs_context.c:129
vfs_parse_fs_string+0xdb/0x170 fs/fs_context.c:191
generic_parse_monolithic+0x16f/0x1f0 fs/fs_context.c:231
do_new_mount fs/namespace.c:3036 [inline]
path_mount+0x12de/0x1e20 fs/namespace.c:3370
do_mount fs/namespace.c:3383 [inline]
__do_sys_mount fs/namespace.c:3591 [inline]
__se_sys_mount fs/namespace.c:3568 [inline]
__x64_sys_mount+0x27f/0x300 fs/namespace.c:3568
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...]
</TASK>
======================================================
According to commit "vfs: parse: deal with zero length string value",
kernel will set the param->string to null pointer in vfs_parse_fs_string()
if fs string has zero length.
Yet the problem is that, hugetlbfs_parse_param() will dereference the
param->string, without checking whether it is a null pointer. To be more
specific, if hugetlbfs_parse_param() parses an illegal mount parameter,
such as "size=,", kernel will constructs struct fs_parameter with null
pointer in vfs_parse_fs_string(), then passes this struct fs_parameter to
hugetlbfs_parse_param(), which triggers the above null-ptr-deref bug.
This patch solves it by adding sanity check on param->string
in hugetlbfs_parse_param(). |