| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: Fix obscure lockdep violation for udc_mutex
A recent commit expanding the scope of the udc_lock mutex in the
gadget core managed to cause an obscure and slightly bizarre lockdep
violation. In abbreviated form:
======================================================
WARNING: possible circular locking dependency detected
5.19.0-rc7+ #12510 Not tainted
------------------------------------------------------
udevadm/312 is trying to acquire lock:
ffff80000aae1058 (udc_lock){+.+.}-{3:3}, at: usb_udc_uevent+0x54/0xe0
but task is already holding lock:
ffff000002277548 (kn->active#4){++++}-{0:0}, at: kernfs_seq_start+0x34/0xe0
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #3 (kn->active#4){++++}-{0:0}:
lock_acquire+0x68/0x84
__kernfs_remove+0x268/0x380
kernfs_remove_by_name_ns+0x58/0xac
sysfs_remove_file_ns+0x18/0x24
device_del+0x15c/0x440
-> #2 (device_links_lock){+.+.}-{3:3}:
lock_acquire+0x68/0x84
__mutex_lock+0x9c/0x430
mutex_lock_nested+0x38/0x64
device_link_remove+0x3c/0xa0
_regulator_put.part.0+0x168/0x190
regulator_put+0x3c/0x54
devm_regulator_release+0x14/0x20
-> #1 (regulator_list_mutex){+.+.}-{3:3}:
lock_acquire+0x68/0x84
__mutex_lock+0x9c/0x430
mutex_lock_nested+0x38/0x64
regulator_lock_dependent+0x54/0x284
regulator_enable+0x34/0x80
phy_power_on+0x24/0x130
__dwc2_lowlevel_hw_enable+0x100/0x130
dwc2_lowlevel_hw_enable+0x18/0x40
dwc2_hsotg_udc_start+0x6c/0x2f0
gadget_bind_driver+0x124/0x1f4
-> #0 (udc_lock){+.+.}-{3:3}:
__lock_acquire+0x1298/0x20cc
lock_acquire.part.0+0xe0/0x230
lock_acquire+0x68/0x84
__mutex_lock+0x9c/0x430
mutex_lock_nested+0x38/0x64
usb_udc_uevent+0x54/0xe0
Evidently this was caused by the scope of udc_mutex being too large.
The mutex is only meant to protect udc->driver along with a few other
things. As far as I can tell, there's no reason for the mutex to be
held while the gadget core calls a gadget driver's ->bind or ->unbind
routine, or while a UDC is being started or stopped. (This accounts
for link #1 in the chain above, where the mutex is held while the
dwc2_hsotg_udc is started as part of driver probing.)
Gadget drivers' ->disconnect callbacks are problematic. Even though
usb_gadget_disconnect() will now acquire the udc_mutex, there's a
window in usb_gadget_bind_driver() between the times when the mutex is
released and the ->bind callback is invoked. If a disconnect occurred
during that window, we could call the driver's ->disconnect routine
before its ->bind routine. To prevent this from happening, it will be
necessary to prevent a UDC from connecting while it has no gadget
driver. This should be done already but it doesn't seem to be;
currently usb_gadget_connect() has no check for this. Such a check
will have to be added later.
Some degree of mutual exclusion is required in soft_connect_store(),
which can dereference udc->driver at arbitrary times since it is a
sysfs callback. The solution here is to acquire the gadget's device
lock rather than the udc_mutex. Since the driver core guarantees that
the device lock is always held during driver binding and unbinding,
this will make the accesses in soft_connect_store() mutually exclusive
with any changes to udc->driver.
Lastly, it turns out there is one place which should hold the
udc_mutex but currently does not: The function_show() routine needs
protection while it dereferences udc->driver. The missing lock and
unlock calls are added. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: storvsc: Remove WQ_MEM_RECLAIM from storvsc_error_wq
storvsc_error_wq workqueue should not be marked as WQ_MEM_RECLAIM as it
doesn't need to make forward progress under memory pressure. Marking this
workqueue as WQ_MEM_RECLAIM may cause deadlock while flushing a
non-WQ_MEM_RECLAIM workqueue. In the current state it causes the following
warning:
[ 14.506347] ------------[ cut here ]------------
[ 14.506354] workqueue: WQ_MEM_RECLAIM storvsc_error_wq_0:storvsc_remove_lun is flushing !WQ_MEM_RECLAIM events_freezable_power_:disk_events_workfn
[ 14.506360] WARNING: CPU: 0 PID: 8 at <-snip->kernel/workqueue.c:2623 check_flush_dependency+0xb5/0x130
[ 14.506390] CPU: 0 PID: 8 Comm: kworker/u4:0 Not tainted 5.4.0-1086-azure #91~18.04.1-Ubuntu
[ 14.506391] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS Hyper-V UEFI Release v4.1 05/09/2022
[ 14.506393] Workqueue: storvsc_error_wq_0 storvsc_remove_lun
[ 14.506395] RIP: 0010:check_flush_dependency+0xb5/0x130
<-snip->
[ 14.506408] Call Trace:
[ 14.506412] __flush_work+0xf1/0x1c0
[ 14.506414] __cancel_work_timer+0x12f/0x1b0
[ 14.506417] ? kernfs_put+0xf0/0x190
[ 14.506418] cancel_delayed_work_sync+0x13/0x20
[ 14.506420] disk_block_events+0x78/0x80
[ 14.506421] del_gendisk+0x3d/0x2f0
[ 14.506423] sr_remove+0x28/0x70
[ 14.506427] device_release_driver_internal+0xef/0x1c0
[ 14.506428] device_release_driver+0x12/0x20
[ 14.506429] bus_remove_device+0xe1/0x150
[ 14.506431] device_del+0x167/0x380
[ 14.506432] __scsi_remove_device+0x11d/0x150
[ 14.506433] scsi_remove_device+0x26/0x40
[ 14.506434] storvsc_remove_lun+0x40/0x60
[ 14.506436] process_one_work+0x209/0x400
[ 14.506437] worker_thread+0x34/0x400
[ 14.506439] kthread+0x121/0x140
[ 14.506440] ? process_one_work+0x400/0x400
[ 14.506441] ? kthread_park+0x90/0x90
[ 14.506443] ret_from_fork+0x35/0x40
[ 14.506445] ---[ end trace 2d9633159fdc6ee7 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix locking in rxrpc's sendmsg
Fix three bugs in the rxrpc's sendmsg implementation:
(1) rxrpc_new_client_call() should release the socket lock when returning
an error from rxrpc_get_call_slot().
(2) rxrpc_wait_for_tx_window_intr() will return without the call mutex
held in the event that we're interrupted by a signal whilst waiting
for tx space on the socket or relocking the call mutex afterwards.
Fix this by: (a) moving the unlock/lock of the call mutex up to
rxrpc_send_data() such that the lock is not held around all of
rxrpc_wait_for_tx_window*() and (b) indicating to higher callers
whether we're return with the lock dropped. Note that this means
recvmsg() will not block on this call whilst we're waiting.
(3) After dropping and regaining the call mutex, rxrpc_send_data() needs
to go and recheck the state of the tx_pending buffer and the
tx_total_len check in case we raced with another sendmsg() on the same
call.
Thinking on this some more, it might make sense to have different locks for
sendmsg() and recvmsg(). There's probably no need to make recvmsg() wait
for sendmsg(). It does mean that recvmsg() can return MSG_EOR indicating
that a call is dead before a sendmsg() to that call returns - but that can
currently happen anyway.
Without fix (2), something like the following can be induced:
WARNING: bad unlock balance detected!
5.16.0-rc6-syzkaller #0 Not tainted
-------------------------------------
syz-executor011/3597 is trying to release lock (&call->user_mutex) at:
[<ffffffff885163a3>] rxrpc_do_sendmsg+0xc13/0x1350 net/rxrpc/sendmsg.c:748
but there are no more locks to release!
other info that might help us debug this:
no locks held by syz-executor011/3597.
...
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_unlock_imbalance_bug include/trace/events/lock.h:58 [inline]
__lock_release kernel/locking/lockdep.c:5306 [inline]
lock_release.cold+0x49/0x4e kernel/locking/lockdep.c:5657
__mutex_unlock_slowpath+0x99/0x5e0 kernel/locking/mutex.c:900
rxrpc_do_sendmsg+0xc13/0x1350 net/rxrpc/sendmsg.c:748
rxrpc_sendmsg+0x420/0x630 net/rxrpc/af_rxrpc.c:561
sock_sendmsg_nosec net/socket.c:704 [inline]
sock_sendmsg+0xcf/0x120 net/socket.c:724
____sys_sendmsg+0x6e8/0x810 net/socket.c:2409
___sys_sendmsg+0xf3/0x170 net/socket.c:2463
__sys_sendmsg+0xe5/0x1b0 net/socket.c:2492
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
[Thanks to Hawkins Jiawei and Khalid Masum for their attempts to fix this] |
| An issue was discovered in PyTorch v2.5 and v2.7.1. Omission of profiler.stop() can cause torch.profiler.profile (PythonTracer) to crash or hang during finalization, leading to a Denial of Service (DoS). |
| OpenPLC Runtime v3 contains an input validation flaw in the /upload-program-action endpoint: the epoch_time field supplied during program uploads is not validated and can be crafted to induce corruption of the programs database. After a successful malformed upload the runtime continues to operate until a restart; on restart the runtime can fail to start because of corrupted database entries, resulting in persistent denial of service requiring complete rebase of the product to recover. This vulnerability was remediated by commit 095ee09. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/pci: Fix get_phb_number() locking
The recent change to get_phb_number() causes a DEBUG_ATOMIC_SLEEP
warning on some systems:
BUG: sleeping function called from invalid context at kernel/locking/mutex.c:580
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper
preempt_count: 1, expected: 0
RCU nest depth: 0, expected: 0
1 lock held by swapper/1:
#0: c157efb0 (hose_spinlock){+.+.}-{2:2}, at: pcibios_alloc_controller+0x64/0x220
Preemption disabled at:
[<00000000>] 0x0
CPU: 0 PID: 1 Comm: swapper Not tainted 5.19.0-yocto-standard+ #1
Call Trace:
[d101dc90] [c073b264] dump_stack_lvl+0x50/0x8c (unreliable)
[d101dcb0] [c0093b70] __might_resched+0x258/0x2a8
[d101dcd0] [c0d3e634] __mutex_lock+0x6c/0x6ec
[d101dd50] [c0a84174] of_alias_get_id+0x50/0xf4
[d101dd80] [c002ec78] pcibios_alloc_controller+0x1b8/0x220
[d101ddd0] [c140c9dc] pmac_pci_init+0x198/0x784
[d101de50] [c140852c] discover_phbs+0x30/0x4c
[d101de60] [c0007fd4] do_one_initcall+0x94/0x344
[d101ded0] [c1403b40] kernel_init_freeable+0x1a8/0x22c
[d101df10] [c00086e0] kernel_init+0x34/0x160
[d101df30] [c001b334] ret_from_kernel_thread+0x5c/0x64
This is because pcibios_alloc_controller() holds hose_spinlock but
of_alias_get_id() takes of_mutex which can sleep.
The hose_spinlock protects the phb_bitmap, and also the hose_list, but
it doesn't need to be held while get_phb_number() calls the OF routines,
because those are only looking up information in the device tree.
So fix it by having get_phb_number() take the hose_spinlock itself, only
where required, and then dropping the lock before returning.
pcibios_alloc_controller() then needs to take the lock again before the
list_add() but that's safe, the order of the list is not important. |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: Fix reset error handling
Do not call iavf_close in iavf_reset_task error handling. Doing so can
lead to double call of napi_disable, which can lead to deadlock there.
Removing VF would lead to iavf_remove task being stuck, because it
requires crit_lock, which is held by iavf_close.
Call iavf_disable_vf if reset fail, so that driver will clean up
remaining invalid resources.
During rapid VF resets, HW can fail to setup VF mailbox. Wrong
error handling can lead to iavf_remove being stuck with:
[ 5218.999087] iavf 0000:82:01.0: Failed to init adminq: -53
...
[ 5267.189211] INFO: task repro.sh:11219 blocked for more than 30 seconds.
[ 5267.189520] Tainted: G S E 5.18.0-04958-ga54ce3703613-dirty #1
[ 5267.189764] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 5267.190062] task:repro.sh state:D stack: 0 pid:11219 ppid: 8162 flags:0x00000000
[ 5267.190347] Call Trace:
[ 5267.190647] <TASK>
[ 5267.190927] __schedule+0x460/0x9f0
[ 5267.191264] schedule+0x44/0xb0
[ 5267.191563] schedule_preempt_disabled+0x14/0x20
[ 5267.191890] __mutex_lock.isra.12+0x6e3/0xac0
[ 5267.192237] ? iavf_remove+0xf9/0x6c0 [iavf]
[ 5267.192565] iavf_remove+0x12a/0x6c0 [iavf]
[ 5267.192911] ? _raw_spin_unlock_irqrestore+0x1e/0x40
[ 5267.193285] pci_device_remove+0x36/0xb0
[ 5267.193619] device_release_driver_internal+0xc1/0x150
[ 5267.193974] pci_stop_bus_device+0x69/0x90
[ 5267.194361] pci_stop_and_remove_bus_device+0xe/0x20
[ 5267.194735] pci_iov_remove_virtfn+0xba/0x120
[ 5267.195130] sriov_disable+0x2f/0xe0
[ 5267.195506] ice_free_vfs+0x7d/0x2f0 [ice]
[ 5267.196056] ? pci_get_device+0x4f/0x70
[ 5267.196496] ice_sriov_configure+0x78/0x1a0 [ice]
[ 5267.196995] sriov_numvfs_store+0xfe/0x140
[ 5267.197466] kernfs_fop_write_iter+0x12e/0x1c0
[ 5267.197918] new_sync_write+0x10c/0x190
[ 5267.198404] vfs_write+0x24e/0x2d0
[ 5267.198886] ksys_write+0x5c/0xd0
[ 5267.199367] do_syscall_64+0x3a/0x80
[ 5267.199827] entry_SYSCALL_64_after_hwframe+0x46/0xb0
[ 5267.200317] RIP: 0033:0x7f5b381205c8
[ 5267.200814] RSP: 002b:00007fff8c7e8c78 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 5267.201981] RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007f5b381205c8
[ 5267.202620] RDX: 0000000000000002 RSI: 00005569420ee900 RDI: 0000000000000001
[ 5267.203426] RBP: 00005569420ee900 R08: 000000000000000a R09: 00007f5b38180820
[ 5267.204327] R10: 000000000000000a R11: 0000000000000246 R12: 00007f5b383c06e0
[ 5267.205193] R13: 0000000000000002 R14: 00007f5b383bb880 R15: 0000000000000002
[ 5267.206041] </TASK>
[ 5267.206970] Kernel panic - not syncing: hung_task: blocked tasks
[ 5267.207809] CPU: 48 PID: 551 Comm: khungtaskd Kdump: loaded Tainted: G S E 5.18.0-04958-ga54ce3703613-dirty #1
[ 5267.208726] Hardware name: Dell Inc. PowerEdge R730/0WCJNT, BIOS 2.11.0 11/02/2019
[ 5267.209623] Call Trace:
[ 5267.210569] <TASK>
[ 5267.211480] dump_stack_lvl+0x33/0x42
[ 5267.212472] panic+0x107/0x294
[ 5267.213467] watchdog.cold.8+0xc/0xbb
[ 5267.214413] ? proc_dohung_task_timeout_secs+0x30/0x30
[ 5267.215511] kthread+0xf4/0x120
[ 5267.216459] ? kthread_complete_and_exit+0x20/0x20
[ 5267.217505] ret_from_fork+0x22/0x30
[ 5267.218459] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
usb: cdns3: Fix deadlock when using NCM gadget
The cdns3 driver has the same NCM deadlock as fixed in cdnsp by commit
58f2fcb3a845 ("usb: cdnsp: Fix deadlock issue during using NCM gadget").
Under PREEMPT_RT the deadlock can be readily triggered by heavy network
traffic, for example using "iperf --bidir" over NCM ethernet link.
The deadlock occurs because the threaded interrupt handler gets
preempted by a softirq, but both are protected by the same spinlock.
Prevent deadlock by disabling softirq during threaded irq handler. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/userptr: fix notifier vs folio deadlock
User is reporting what smells like notifier vs folio deadlock, where
migrate_pages_batch() on core kernel side is holding folio lock(s) and
then interacting with the mappings of it, however those mappings are
tied to some userptr, which means calling into the notifier callback and
grabbing the notifier lock. With perfect timing it looks possible that
the pages we pulled from the hmm fault can get sniped by
migrate_pages_batch() at the same time that we are holding the notifier
lock to mark the pages as accessed/dirty, but at this point we also want
to grab the folio locks(s) to mark them as dirty, but if they are
contended from notifier/migrate_pages_batch side then we deadlock since
folio lock won't be dropped until we drop the notifier lock.
Fortunately the mark_page_accessed/dirty is not really needed in the
first place it seems and should have already been done by hmm fault, so
just remove it.
(cherry picked from commit bd7c0cb695e87c0e43247be8196b4919edbe0e85) |
| In the Linux kernel, the following vulnerability has been resolved:
um: work around sched_yield not yielding in time-travel mode
sched_yield by a userspace may not actually cause scheduling in
time-travel mode as no time has passed. In the case seen it appears to
be a badly implemented userspace spinlock in ASAN. Unfortunately, with
time-travel it causes an extreme slowdown or even deadlock depending on
the kernel configuration (CONFIG_UML_MAX_USERSPACE_ITERATIONS).
Work around it by accounting time to the process whenever it executes a
sched_yield syscall. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix deadlock between rcu_tasks_trace and event_mutex.
Fix the following deadlock:
CPU A
_free_event()
perf_kprobe_destroy()
mutex_lock(&event_mutex)
perf_trace_event_unreg()
synchronize_rcu_tasks_trace()
There are several paths where _free_event() grabs event_mutex
and calls sync_rcu_tasks_trace. Above is one such case.
CPU B
bpf_prog_test_run_syscall()
rcu_read_lock_trace()
bpf_prog_run_pin_on_cpu()
bpf_prog_load()
bpf_tracing_func_proto()
trace_set_clr_event()
mutex_lock(&event_mutex)
Delegate trace_set_clr_event() to workqueue to avoid
such lock dependency. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: u_audio: don't let userspace block driver unbind
In the unbind callback for f_uac1 and f_uac2, a call to snd_card_free()
via g_audio_cleanup() will disconnect the card and then wait for all
resources to be released, which happens when the refcount falls to zero.
Since userspace can keep the refcount incremented by not closing the
relevant file descriptor, the call to unbind may block indefinitely.
This can cause a deadlock during reboot, as evidenced by the following
blocked task observed on my machine:
task:reboot state:D stack:0 pid:2827 ppid:569 flags:0x0000000c
Call trace:
__switch_to+0xc8/0x140
__schedule+0x2f0/0x7c0
schedule+0x60/0xd0
schedule_timeout+0x180/0x1d4
wait_for_completion+0x78/0x180
snd_card_free+0x90/0xa0
g_audio_cleanup+0x2c/0x64
afunc_unbind+0x28/0x60
...
kernel_restart+0x4c/0xac
__do_sys_reboot+0xcc/0x1ec
__arm64_sys_reboot+0x28/0x30
invoke_syscall+0x4c/0x110
...
The issue can also be observed by opening the card with arecord and
then stopping the process through the shell before unbinding:
# arecord -D hw:UAC2Gadget -f S32_LE -c 2 -r 48000 /dev/null
Recording WAVE '/dev/null' : Signed 32 bit Little Endian, Rate 48000 Hz, Stereo
^Z[1]+ Stopped arecord -D hw:UAC2Gadget -f S32_LE -c 2 -r 48000 /dev/null
# echo gadget.0 > /sys/bus/gadget/drivers/configfs-gadget/unbind
(observe that the unbind command never finishes)
Fix the problem by using snd_card_free_when_closed() instead, which will
still disconnect the card as desired, but defer the task of freeing the
resources to the core once userspace closes its file descriptor. |
| Improper resource management in firmware of some Solidigm DC Products may allow an attacker with local or physical access to gain un-authorized access to a locked Storage Device or create a Denial of Service. |
| IdentityIQ 8.4 and all 8.4 patch levels prior to 8.4p2, IdentityIQ 8.3 and all 8.3 patch levels prior to 8.3p5, IdentityIQ 8.2 and all 8.2 patch levels prior to 8.2p8, and all prior versions allow HTTP/HTTPS access to static content in the IdentityIQ application directory that should be protected. |
| A vulnerability has been identified in SICAM GridEdge (Classic) (All versions < V2.7.3). The affected application uses an improperly protected file to import SSH keys. This could allow attackers with access to the filesystem of the host on which SICAM GridEdge runs to inject a custom SSH key to that file. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: xilinx: don't make a sleepable memory allocation from an atomic context
The following issue was discovered using lockdep:
[ 6.691371] BUG: sleeping function called from invalid context at include/linux/sched/mm.h:209
[ 6.694602] in_atomic(): 1, irqs_disabled(): 128, non_block: 0, pid: 1, name: swapper/0
[ 6.702431] 2 locks held by swapper/0/1:
[ 6.706300] #0: ffffff8800f6f188 (&dev->mutex){....}-{3:3}, at: __device_driver_lock+0x4c/0x90
[ 6.714900] #1: ffffffc009a2abb8 (enable_lock){....}-{2:2}, at: clk_enable_lock+0x4c/0x140
[ 6.723156] irq event stamp: 304030
[ 6.726596] hardirqs last enabled at (304029): [<ffffffc008d17ee0>] _raw_spin_unlock_irqrestore+0xc0/0xd0
[ 6.736142] hardirqs last disabled at (304030): [<ffffffc00876bc5c>] clk_enable_lock+0xfc/0x140
[ 6.744742] softirqs last enabled at (303958): [<ffffffc0080904f0>] _stext+0x4f0/0x894
[ 6.752655] softirqs last disabled at (303951): [<ffffffc0080e53b8>] irq_exit+0x238/0x280
[ 6.760744] CPU: 1 PID: 1 Comm: swapper/0 Tainted: G U 5.15.36 #2
[ 6.768048] Hardware name: xlnx,zynqmp (DT)
[ 6.772179] Call trace:
[ 6.774584] dump_backtrace+0x0/0x300
[ 6.778197] show_stack+0x18/0x30
[ 6.781465] dump_stack_lvl+0xb8/0xec
[ 6.785077] dump_stack+0x1c/0x38
[ 6.788345] ___might_sleep+0x1a8/0x2a0
[ 6.792129] __might_sleep+0x6c/0xd0
[ 6.795655] kmem_cache_alloc_trace+0x270/0x3d0
[ 6.800127] do_feature_check_call+0x100/0x220
[ 6.804513] zynqmp_pm_invoke_fn+0x8c/0xb0
[ 6.808555] zynqmp_pm_clock_getstate+0x90/0xe0
[ 6.813027] zynqmp_pll_is_enabled+0x8c/0x120
[ 6.817327] zynqmp_pll_enable+0x38/0xc0
[ 6.821197] clk_core_enable+0x144/0x400
[ 6.825067] clk_core_enable+0xd4/0x400
[ 6.828851] clk_core_enable+0xd4/0x400
[ 6.832635] clk_core_enable+0xd4/0x400
[ 6.836419] clk_core_enable+0xd4/0x400
[ 6.840203] clk_core_enable+0xd4/0x400
[ 6.843987] clk_core_enable+0xd4/0x400
[ 6.847771] clk_core_enable+0xd4/0x400
[ 6.851555] clk_core_enable_lock+0x24/0x50
[ 6.855683] clk_enable+0x24/0x40
[ 6.858952] fclk_probe+0x84/0xf0
[ 6.862220] platform_probe+0x8c/0x110
[ 6.865918] really_probe+0x110/0x5f0
[ 6.869530] __driver_probe_device+0xcc/0x210
[ 6.873830] driver_probe_device+0x64/0x140
[ 6.877958] __driver_attach+0x114/0x1f0
[ 6.881828] bus_for_each_dev+0xe8/0x160
[ 6.885698] driver_attach+0x34/0x50
[ 6.889224] bus_add_driver+0x228/0x300
[ 6.893008] driver_register+0xc0/0x1e0
[ 6.896792] __platform_driver_register+0x44/0x60
[ 6.901436] fclk_driver_init+0x1c/0x28
[ 6.905220] do_one_initcall+0x104/0x590
[ 6.909091] kernel_init_freeable+0x254/0x2bc
[ 6.913390] kernel_init+0x24/0x130
[ 6.916831] ret_from_fork+0x10/0x20
Fix it by passing the GFP_ATOMIC gfp flag for the corresponding
memory allocation. |
| A flaw was found in libvirt. The virStoragePoolObjListSearch function does not return a locked pool as expected, resulting in a race condition and denial of service when attempting to lock the same object from another thread. This issue could allow clients connecting to the read-only socket to crash the libvirt daemon. |
| In the Linux kernel, the following vulnerability has been resolved:
igb: revert rtnl_lock() that causes deadlock
The commit 6faee3d4ee8b ("igb: Add lock to avoid data race") adds
rtnl_lock to eliminate a false data race shown below
(FREE from device detaching) | (USE from netdev core)
igb_remove | igb_ndo_get_vf_config
igb_disable_sriov | vf >= adapter->vfs_allocated_count?
kfree(adapter->vf_data) |
adapter->vfs_allocated_count = 0 |
| memcpy(... adapter->vf_data[vf]
The above race will never happen and the extra rtnl_lock causes deadlock
below
[ 141.420169] <TASK>
[ 141.420672] __schedule+0x2dd/0x840
[ 141.421427] schedule+0x50/0xc0
[ 141.422041] schedule_preempt_disabled+0x11/0x20
[ 141.422678] __mutex_lock.isra.13+0x431/0x6b0
[ 141.423324] unregister_netdev+0xe/0x20
[ 141.423578] igbvf_remove+0x45/0xe0 [igbvf]
[ 141.423791] pci_device_remove+0x36/0xb0
[ 141.423990] device_release_driver_internal+0xc1/0x160
[ 141.424270] pci_stop_bus_device+0x6d/0x90
[ 141.424507] pci_stop_and_remove_bus_device+0xe/0x20
[ 141.424789] pci_iov_remove_virtfn+0xba/0x120
[ 141.425452] sriov_disable+0x2f/0xf0
[ 141.425679] igb_disable_sriov+0x4e/0x100 [igb]
[ 141.426353] igb_remove+0xa0/0x130 [igb]
[ 141.426599] pci_device_remove+0x36/0xb0
[ 141.426796] device_release_driver_internal+0xc1/0x160
[ 141.427060] driver_detach+0x44/0x90
[ 141.427253] bus_remove_driver+0x55/0xe0
[ 141.427477] pci_unregister_driver+0x2a/0xa0
[ 141.428296] __x64_sys_delete_module+0x141/0x2b0
[ 141.429126] ? mntput_no_expire+0x4a/0x240
[ 141.429363] ? syscall_trace_enter.isra.19+0x126/0x1a0
[ 141.429653] do_syscall_64+0x5b/0x80
[ 141.429847] ? exit_to_user_mode_prepare+0x14d/0x1c0
[ 141.430109] ? syscall_exit_to_user_mode+0x12/0x30
[ 141.430849] ? do_syscall_64+0x67/0x80
[ 141.431083] ? syscall_exit_to_user_mode_prepare+0x183/0x1b0
[ 141.431770] ? syscall_exit_to_user_mode+0x12/0x30
[ 141.432482] ? do_syscall_64+0x67/0x80
[ 141.432714] ? exc_page_fault+0x64/0x140
[ 141.432911] entry_SYSCALL_64_after_hwframe+0x72/0xdc
Since the igb_disable_sriov() will call pci_disable_sriov() before
releasing any resources, the netdev core will synchronize the cleanup to
avoid any races. This patch removes the useless rtnl_(un)lock to guarantee
correctness. |
| A flaw was found in the blkgs destruction path in block/blk-cgroup.c in the Linux kernel, leading to a cgroup blkio memory leakage problem. When a cgroup is being destroyed, cgroup_rstat_flush() is only called at css_release_work_fn(), which is called when the blkcg reference count reaches 0. This circular dependency will prevent blkcg and some blkgs from being freed after they are made offline. This issue may allow an attacker with a local access to cause system instability, such as an out of memory error. |
| A race condition vulnerability was found in the vmwgfx driver in the Linux kernel. The flaw exists within the handling of GEM objects. The issue results from improper locking when performing operations on an object. This flaw allows a local privileged user to disclose information in the context of the kernel. |