| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A health check port on Zscaler Client Connector on Windows, versions 4.6 < 4.6.0.216 and 4.7 < 4.7.0.47, which under specific circumstances was not released after use, allowed traffic to potentially bypass ZCC forwarding controls. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix inode list leak during backref walking at find_parent_nodes()
During backref walking, at find_parent_nodes(), if we are dealing with a
data extent and we get an error while resolving the indirect backrefs, at
resolve_indirect_refs(), or in the while loop that iterates over the refs
in the direct refs rbtree, we end up leaking the inode lists attached to
the direct refs we have in the direct refs rbtree that were not yet added
to the refs ulist passed as argument to find_parent_nodes(). Since they
were not yet added to the refs ulist and prelim_release() does not free
the lists, on error the caller can only free the lists attached to the
refs that were added to the refs ulist, all the remaining refs get their
inode lists never freed, therefore leaking their memory.
Fix this by having prelim_release() always free any attached inode list
to each ref found in the rbtree, and have find_parent_nodes() set the
ref's inode list to NULL once it transfers ownership of the inode list
to a ref added to the refs ulist passed to find_parent_nodes(). |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nft_socket: fix sk refcount leaks
We must put 'sk' reference before returning. |
| This issue was addressed by improved management of object lifetimes. This issue is fixed in macOS Ventura 13.7.3, macOS Sequoia 15.3, macOS Sonoma 14.7.3. An attacker may be able to cause unexpected app termination. |
| In the Linux kernel, the following vulnerability has been resolved:
svcrdma: fix miss destroy percpu_counter in svc_rdma_proc_init()
There's issue as follows:
RPC: Registered rdma transport module.
RPC: Registered rdma backchannel transport module.
RPC: Unregistered rdma transport module.
RPC: Unregistered rdma backchannel transport module.
BUG: unable to handle page fault for address: fffffbfff80c609a
PGD 123fee067 P4D 123fee067 PUD 123fea067 PMD 10c624067 PTE 0
Oops: Oops: 0000 [#1] PREEMPT SMP KASAN NOPTI
RIP: 0010:percpu_counter_destroy_many+0xf7/0x2a0
Call Trace:
<TASK>
__die+0x1f/0x70
page_fault_oops+0x2cd/0x860
spurious_kernel_fault+0x36/0x450
do_kern_addr_fault+0xca/0x100
exc_page_fault+0x128/0x150
asm_exc_page_fault+0x26/0x30
percpu_counter_destroy_many+0xf7/0x2a0
mmdrop+0x209/0x350
finish_task_switch.isra.0+0x481/0x840
schedule_tail+0xe/0xd0
ret_from_fork+0x23/0x80
ret_from_fork_asm+0x1a/0x30
</TASK>
If register_sysctl() return NULL, then svc_rdma_proc_cleanup() will not
destroy the percpu counters which init in svc_rdma_proc_init().
If CONFIG_HOTPLUG_CPU is enabled, residual nodes may be in the
'percpu_counters' list. The above issue may occur once the module is
removed. If the CONFIG_HOTPLUG_CPU configuration is not enabled, memory
leakage occurs.
To solve above issue just destroy all percpu counters when
register_sysctl() return NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gt: Cleanup partial engine discovery failures
If we abort driver initialisation in the middle of gt/engine discovery,
some engines will be fully setup and some not. Those incompletely setup
engines only have 'engine->release == NULL' and so will leak any of the
common objects allocated.
v2:
- Drop the destroy_pinned_context() helper for now. It's not really
worth it with just a single callsite at the moment. (Janusz) |
| A denial of service vulnerability exists in the HTTP Header Parsing functionality of Tenda AC6 V5.0 V02.03.01.110. A specially crafted series of HTTP requests can lead to a reboot. An attacker can send multiple network packets to trigger this vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
ppp: fix memory leak in pad_compress_skb
If alloc_skb() fails in pad_compress_skb(), it returns NULL without
releasing the old skb. The caller does:
skb = pad_compress_skb(ppp, skb);
if (!skb)
goto drop;
drop:
kfree_skb(skb);
When pad_compress_skb() returns NULL, the reference to the old skb is
lost and kfree_skb(skb) ends up doing nothing, leading to a memory leak.
Align pad_compress_skb() semantics with realloc(): only free the old
skb if allocation and compression succeed. At the call site, use the
new_skb variable so the original skb is not lost when pad_compress_skb()
fails. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: pnv_php: Clean up allocated IRQs on unplug
When the root of a nested PCIe bridge configuration is unplugged, the
pnv_php driver leaked the allocated IRQ resources for the child bridges'
hotplug event notifications, resulting in a panic.
Fix this by walking all child buses and deallocating all its IRQ resources
before calling pci_hp_remove_devices().
Also modify the lifetime of the workqueue at struct pnv_php_slot::wq so
that it is only destroyed in pnv_php_free_slot(), instead of
pnv_php_disable_irq(). This is required since pnv_php_disable_irq() will
now be called by workers triggered by hot unplug interrupts, so the
workqueue needs to stay allocated.
The abridged kernel panic that occurs without this patch is as follows:
WARNING: CPU: 0 PID: 687 at kernel/irq/msi.c:292 msi_device_data_release+0x6c/0x9c
CPU: 0 UID: 0 PID: 687 Comm: bash Not tainted 6.14.0-rc5+ #2
Call Trace:
msi_device_data_release+0x34/0x9c (unreliable)
release_nodes+0x64/0x13c
devres_release_all+0xc0/0x140
device_del+0x2d4/0x46c
pci_destroy_dev+0x5c/0x194
pci_hp_remove_devices+0x90/0x128
pci_hp_remove_devices+0x44/0x128
pnv_php_disable_slot+0x54/0xd4
power_write_file+0xf8/0x18c
pci_slot_attr_store+0x40/0x5c
sysfs_kf_write+0x64/0x78
kernfs_fop_write_iter+0x1b0/0x290
vfs_write+0x3bc/0x50c
ksys_write+0x84/0x140
system_call_exception+0x124/0x230
system_call_vectored_common+0x15c/0x2ec
[bhelgaas: tidy comments] |
| FlashMQ is a MQTT broker/server, designed for multi-CPU environments. Prior to version 1.23.2, any authenticated user can create sessions and have them collect QoS messages. When not sent to a client, these are then not released upon (eventual) session expiration. Version 1.23.2 fixes the issue. |
| Wasmtime is a runtime for WebAssembly. Wasmtime 37.0.0 and 37.0.1 have memory leaks in the C/C++ API when using bindings for the `anyref` or `externref` WebAssembly values. This is caused by a regression introduced during the development of 37.0.0 and all prior versions of Wasmtime are unaffected. If `anyref` or `externref` is not used in the C/C++ API then embeddings are also unaffected by the leaky behavior. The `wasmtime` Rust crate is unaffected by this leak.
Development of Wasmtime 37.0.0 included a refactoring in Rust of changing the old `ManuallyRooted<T>` type to a new `OwnedRooted<T>` type. This change was integrated into Wasmtime's C API but left the C API in a state which had memory leaks. Additionally the new ownership semantics around this type were not reflected into the C++ API, making it leak-prone. A short version of the change is that previously `ManuallyRooted<T>`, as the name implies, required manual calls to an "unroot" operation. If this was forgotten then the memory was still cleaned up when the `wasmtime_store_t` itself was destroyed eventually. Documentation of when to "unroot" was sparse and there were already situations prior to 37.0.0 where memory would be leaked until the store was destroyed anyway. All memory, though, was always bound by the store, and destroying the store would guarantee that there were no memory leaks.
In migrating to `OwnedRooted<T>` the usage of the type in Rust changed. A manual "unroot" operation is no longer required and it happens naturally as a destructor of the `OwnedRooted<T>` type in Rust itself. These new resource ownership semantics were not fully integrated into the preexisting semantics of the C/C++ APIs in Wasmtime. A crucial distinction of `OwnedRooted<T>` vs `ManuallyRooted<T>` is that the `OwnedRooted<T>` type allocates host memory outside of the store. This means that if an `OwnedRooted<T>` is leaked then destroying a store does not release this memory and it's a permanent memory leak on the host.
This led to a few distinct, but related, issues arising: A typo in the `wasmtime_val_unroot` function in the C API meant that it did not actually unroot anything. This meant that even if embedders faithfully call the function then memory will be leaked. If a host-defined function returned a `wasmtime_{externref,anyref}_t` value then the value was never unrooted. The C/C++ API no longer has access to the value and the Rust implementation did not unroot. This meant that any values returned this way were never unrooted. The goal of the C++ API of Wasmtime is to encode automatic memory management in the type system, but the C++ API was not updated when `OwnedRooted<T>` was added. This meant that idiomatic usage of the C++ API would leak memory due to a lack of destructors on values.
These issues have all been fixed in a 37.0.2 release of Wasmtime. The implementation of the C and C++ APIs have been updated accordingly and respectively to account for the changes of ownership here. For example `wasmtime_val_unroot` has been fixed to unroot, the Rust-side implementation of calling an embedder-defined function will unroot return values, and the C++ API now has destructors on the `ExternRef`, `AnyRef`, and `Val` types. These changes have been made to the 37.0.x release branch in a non-API-breaking fashion. Changes to the 38.0.0 release branch (and `main` in the Wasmtime repository) include minor API updates to better accommodate the API semantic changes. The only known workaround at this time is to avoid using `externref` and `anyref` in the C/C++ API of Wasmtime. If avoiding those types is not possible then it's required for users to update to mitigate the leak issue. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix vport QoS cleanup on error
When enabling vport QoS fails, the scheduling node was never freed,
causing a leak.
Add the missing free and reset the vport scheduling node pointer to
NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmem: core: fix cleanup after dev_set_name()
If dev_set_name() fails, we leak nvmem->wp_gpio as the cleanup does not
put this. While a minimal fix for this would be to add the gpiod_put()
call, we can do better if we split device_register(), and use the
tested nvmem_release() cleanup code by initialising the device early,
and putting the device.
This results in a slightly larger fix, but results in clear code.
Note: this patch depends on "nvmem: core: initialise nvmem->id early"
and "nvmem: core: remove nvmem_config wp_gpio".
[Srini: Fixed subject line and error code handing with wp_gpio while applying.] |
| IBM MQ 9.1, 9.2, 9.3, 9.4 LTS and 9.3, 9.4 CD is vulnerable to a denial of service, caused by improper enforcement of the timeout on individual read operations. By conducting slowloris-type attacks, a remote attacker could exploit this vulnerability to cause a denial of service. |
| A vulnerability in the Remote Access VPN (RAVPN) service of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) of the RAVPN service.
This vulnerability is due to resource exhaustion. An attacker could exploit this vulnerability by sending a large number of VPN authentication requests to an affected device. A successful exploit could allow the attacker to exhaust resources, resulting in a DoS of the RAVPN service on the affected device. Depending on the impact of the attack, a reload of the device may be required to restore the RAVPN service. Services that are not related to VPN are not affected.
Cisco Talos discussed these attacks in the blog post Large-scale brute-force activity targeting VPNs, SSH services with commonly used login credentials. |
| FontForge v20230101 was discovered to contain a memory leak via the component DlgCreate8. |
| FontForge v20230101 was discovered to contain a memory leak via the utf7toutf8_copy function at /fontforge/sfd.c. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: mvm: don't leak a link on AP removal
Release the link mapping resource in AP removal. This impacted devices
that do not support the MLD API (9260 and down).
On those devices, we couldn't start the AP again after the AP has been
already started and stopped. |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: smscufx: fix error handling code in ufx_usb_probe
The current error handling code in ufx_usb_probe have many unmatching
issues, e.g., missing ufx_free_usb_list, destroy_modedb label should
only include framebuffer_release, fb_dealloc_cmap only matches
fb_alloc_cmap.
My local syzkaller reports a memory leak bug:
memory leak in ufx_usb_probe
BUG: memory leak
unreferenced object 0xffff88802f879580 (size 128):
comm "kworker/0:7", pid 17416, jiffies 4295067474 (age 46.710s)
hex dump (first 32 bytes):
80 21 7c 2e 80 88 ff ff 18 d0 d0 0c 80 88 ff ff .!|.............
00 d0 d0 0c 80 88 ff ff e0 ff ff ff 0f 00 00 00 ................
backtrace:
[<ffffffff814c99a0>] kmalloc_trace+0x20/0x90 mm/slab_common.c:1045
[<ffffffff824d219c>] kmalloc include/linux/slab.h:553 [inline]
[<ffffffff824d219c>] kzalloc include/linux/slab.h:689 [inline]
[<ffffffff824d219c>] ufx_alloc_urb_list drivers/video/fbdev/smscufx.c:1873 [inline]
[<ffffffff824d219c>] ufx_usb_probe+0x11c/0x15a0 drivers/video/fbdev/smscufx.c:1655
[<ffffffff82d17927>] usb_probe_interface+0x177/0x370 drivers/usb/core/driver.c:396
[<ffffffff82712f0d>] call_driver_probe drivers/base/dd.c:560 [inline]
[<ffffffff82712f0d>] really_probe+0x12d/0x390 drivers/base/dd.c:639
[<ffffffff8271322f>] __driver_probe_device+0xbf/0x140 drivers/base/dd.c:778
[<ffffffff827132da>] driver_probe_device+0x2a/0x120 drivers/base/dd.c:808
[<ffffffff82713c27>] __device_attach_driver+0xf7/0x150 drivers/base/dd.c:936
[<ffffffff82710137>] bus_for_each_drv+0xb7/0x100 drivers/base/bus.c:427
[<ffffffff827136b5>] __device_attach+0x105/0x2d0 drivers/base/dd.c:1008
[<ffffffff82711d36>] bus_probe_device+0xc6/0xe0 drivers/base/bus.c:487
[<ffffffff8270e242>] device_add+0x642/0xdc0 drivers/base/core.c:3517
[<ffffffff82d14d5f>] usb_set_configuration+0x8ef/0xb80 drivers/usb/core/message.c:2170
[<ffffffff82d2576c>] usb_generic_driver_probe+0x8c/0xc0 drivers/usb/core/generic.c:238
[<ffffffff82d16ffc>] usb_probe_device+0x5c/0x140 drivers/usb/core/driver.c:293
[<ffffffff82712f0d>] call_driver_probe drivers/base/dd.c:560 [inline]
[<ffffffff82712f0d>] really_probe+0x12d/0x390 drivers/base/dd.c:639
[<ffffffff8271322f>] __driver_probe_device+0xbf/0x140 drivers/base/dd.c:778
Fix this bug by rewriting the error handling code in ufx_usb_probe. |
| In the Linux kernel, the following vulnerability has been resolved:
net/tcp: Fix socket memory leak in TCP-AO failure handling for IPv6
When tcp_ao_copy_all_matching() fails in tcp_v6_syn_recv_sock() it just
exits the function. This ends up causing a memory-leak:
unreferenced object 0xffff0000281a8200 (size 2496):
comm "softirq", pid 0, jiffies 4295174684
hex dump (first 32 bytes):
7f 00 00 06 7f 00 00 06 00 00 00 00 cb a8 88 13 ................
0a 00 03 61 00 00 00 00 00 00 00 00 00 00 00 00 ...a............
backtrace (crc 5ebdbe15):
kmemleak_alloc+0x44/0xe0
kmem_cache_alloc_noprof+0x248/0x470
sk_prot_alloc+0x48/0x120
sk_clone_lock+0x38/0x3b0
inet_csk_clone_lock+0x34/0x150
tcp_create_openreq_child+0x3c/0x4a8
tcp_v6_syn_recv_sock+0x1c0/0x620
tcp_check_req+0x588/0x790
tcp_v6_rcv+0x5d0/0xc18
ip6_protocol_deliver_rcu+0x2d8/0x4c0
ip6_input_finish+0x74/0x148
ip6_input+0x50/0x118
ip6_sublist_rcv+0x2fc/0x3b0
ipv6_list_rcv+0x114/0x170
__netif_receive_skb_list_core+0x16c/0x200
netif_receive_skb_list_internal+0x1f0/0x2d0
This is because in tcp_v6_syn_recv_sock (and the IPv4 counterpart), when
exiting upon error, inet_csk_prepare_forced_close() and tcp_done() need
to be called. They make sure the newsk will end up being correctly
free'd.
tcp_v4_syn_recv_sock() makes this very clear by having the put_and_exit
label that takes care of things. So, this patch here makes sure
tcp_v4_syn_recv_sock and tcp_v6_syn_recv_sock have similar
error-handling and thus fixes the leak for TCP-AO. |