| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A maliciously crafted X_B file, when parsed in pskernel.DLL through Autodesk applications, can lead to a memory corruption vulnerability by write access violation. This vulnerability, in conjunction with other vulnerabilities, can lead to code execution in the context of the current process. |
| A maliciously crafted SLDASM or SLDPRT file, when parsed in ODXSW_DLL.dll through Autodesk applications, can lead to a memory corruption vulnerability by write access violation. This vulnerability, along with other vulnerabilities, can lead to code execution in the current process. |
| A maliciously crafted PRT file, when parsed in odxug_dll.dll through Autodesk AutoCAD, may force an Out-of-Bounds Write vulnerability. A malicious actor may leverage this vulnerability to cause a crash, cause data corruption, or execute arbitrary code in the context of the current process. |
| A maliciously crafted CATPRODUCT file, when parsed in CC5Dll.dll through Autodesk applications, can lead to a memory corruption vulnerability by write access violation. This vulnerability, in conjunction with other vulnerabilities, can lead to code execution in the context of the current process. |
| A maliciously crafted CATPART, X_B and STEP, when parsed in ASMKERN228A.dll and ASMKERN229A.dll through Autodesk applications, can lead to a memory corruption vulnerability by write access violation. This vulnerability, in conjunction with other vulnerabilities, can lead to code execution in the context of the current process. |
| A maliciously crafted X_B and X_T file, when parsed in pskernel.DLL through through Autodesk AutoCAD, may force an Out-of-Bounds Write vulnerability. A malicious actor may leverage this vulnerability to cause a crash, cause data corruption, or execute arbitrary code in the context of the current process. |
| A maliciously crafted DWG and SLDPRT file, when parsed in opennurbs.dll and ODXSW_DLL.dll through Autodesk applications, can be used to cause a Stack-based Overflow. A malicious actor can leverage this vulnerability to cause a crash, read sensitive data, or execute arbitrary code in the context of the current process. |
| A maliciously crafted 3DM file, when parsed in opennurbs.dll through Autodesk applications, can force an Out-of-Bounds Write. A malicious actor can leverage this vulnerability to cause a crash, write sensitive data, or execute arbitrary code in the context of the current process. |
| A maliciously crafted SLDPRT file, when parsed in ODXSW_DLL.dll through Autodesk applications, can be used to cause a Heap-based Overflow. A malicious actor can leverage this vulnerability to cause a crash, read sensitive data, or execute arbitrary code in the context of the current process. |
| An out-of-bounds write issue was addressed with improved checks to prevent unauthorized actions. This issue is fixed in visionOS 2.3.2, iOS 18.3.2 and iPadOS 18.3.2, macOS Sequoia 15.3.2, Safari 18.3.1, watchOS 11.4, iPadOS 17.7.6, iOS 16.7.11 and iPadOS 16.7.11, iOS 15.8.4 and iPadOS 15.8.4. Maliciously crafted web content may be able to break out of Web Content sandbox. This is a supplementary fix for an attack that was blocked in iOS 17.2. (Apple is aware of a report that this issue may have been exploited in an extremely sophisticated attack against specific targeted individuals on versions of iOS before iOS 17.2.). |
| A maliciously crafted 3DM file, when parsed in opennurbs.dll through Autodesk applications, can be used to cause a Heap-based Overflow. A malicious actor can leverage this vulnerability to cause a crash, read sensitive data, or execute arbitrary code in the context of the current process. |
| A maliciously crafted RBG file, when parsed through Autodesk 3ds Max, can force an Out-of-Bounds Write vulnerability. A malicious actor may leverage this vulnerability to cause a crash, cause data corruption, or execute arbitrary code in the context of the current process. |
| A maliciously crafted STP file, when parsed in ASMIMPORT228A.dll through Autodesk AutoCAD, may force an Out-of-Bounds Write vulnerability. A malicious actor may leverage this vulnerability to cause a crash, cause data corruption, or execute arbitrary code in the context of the current process. |
| A maliciously crafted DWFX file, when parsed through Autodesk Navisworks, can be used to cause a Heap-based Overflow vulnerability. A malicious actor can leverage this vulnerability to cause a crash, read sensitive data, or execute arbitrary code in the context of the current process. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Prevent buffer overflow crashes in debugfs with malformed user input
Malformed user input to debugfs results in buffer overflow crashes. Adapt
input string lengths to fit within internal buffers, leaving space for NULL
terminators. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: sja1105: fix buffer overflow in sja1105_setup_devlink_regions()
If an error occurs in dsa_devlink_region_create(), then 'priv->regions'
array will be accessed by negative index '-1'.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: avs: Fix potential buffer overflow by snprintf()
snprintf() returns the would-be-filled size when the string overflows
the given buffer size, hence using this value may result in a buffer
overflow (although it's unrealistic).
This patch replaces it with a safer version, scnprintf() for papering
over such a potential issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: debug: Fix potential buffer overflow by snprintf()
snprintf() returns the would-be-filled size when the string overflows
the given buffer size, hence using this value may result in the buffer
overflow (although it's unrealistic).
This patch replaces with a safer version, scnprintf() for papering
over such a potential issue. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: Intel: hda: Fix potential buffer overflow by snprintf()
snprintf() returns the would-be-filled size when the string overflows
the given buffer size, hence using this value may result in the buffer
overflow (although it's unrealistic).
This patch replaces with a safer version, scnprintf() for papering
over such a potential issue. |
| cups-filters contains backends, filters, and other software required to get the cups printing service working on operating systems other than macos. In cups-filters prior to 1.28.18, by crafting a PDF file with a large `MediaBox` value, an attacker can cause CUPS-Filter 1.x’s `pdftoraster` tool to write beyond the bounds of an array. First, a PDF with a large `MediaBox` width value causes `header.cupsWidth` to become large. Next, the calculation of `bytesPerLine = (header.cupsBitsPerPixel * header.cupsWidth + 7) / 8` overflows, resulting in a small value. Then, `lineBuf` is allocated with the small `bytesPerLine` size. Finally, `convertLineChunked` calls `writePixel8`, which attempts to write to `lineBuf` outside of its buffer size (out of bounds write). In libcupsfilters, the maintainers found the same `bytesPerLine` multiplication without overflow check, but the provided test case does not cause an overflow there, because the values are different. Commit 50d94ca0f2fa6177613c97c59791bde568631865 contains a patch, which is incorporated into cups-filters version 1.28.18. |