In the Linux kernel, the following vulnerability has been resolved:

arm64: entry: fix ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD

Currently the ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD workaround isn't
quite right, as it is supposed to be applied after the last explicit
memory access, but is immediately followed by an LDR.

The ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD workaround is used to
handle Cortex-A520 erratum 2966298 and Cortex-A510 erratum 3117295,
which are described in:

* https://developer.arm.com/documentation/SDEN2444153/0600/?lang=en
* https://developer.arm.com/documentation/SDEN1873361/1600/?lang=en

In both cases the workaround is described as:

| If pagetable isolation is disabled, the context switch logic in the
| kernel can be updated to execute the following sequence on affected
| cores before exiting to EL0, and after all explicit memory accesses:
|
| 1. A non-shareable TLBI to any context and/or address, including
| unused contexts or addresses, such as a `TLBI VALE1 Xzr`.
|
| 2. A DSB NSH to guarantee completion of the TLBI.

The important part being that the TLBI+DSB must be placed "after all
explicit memory accesses".

Unfortunately, as-implemented, the TLBI+DSB is immediately followed by
an LDR, as we have:

| alternative_if ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
| tlbi vale1, xzr
| dsb nsh
| alternative_else_nop_endif
| alternative_if_not ARM64_UNMAP_KERNEL_AT_EL0
| ldr lr, [sp, #S_LR]
| add sp, sp, #PT_REGS_SIZE // restore sp
| eret
| alternative_else_nop_endif
|
| [ ... KPTI exception return path ... ]

This patch fixes this by reworking the logic to place the TLBI+DSB
immediately before the ERET, after all explicit memory accesses.

The ERET is currently in a separate alternative block, and alternatives
cannot be nested. To account for this, the alternative block for
ARM64_UNMAP_KERNEL_AT_EL0 is replaced with a single alternative branch
to skip the KPTI logic, with the new shape of the logic being:

| alternative_insn "b .L_skip_tramp_exit_\@", nop, ARM64_UNMAP_KERNEL_AT_EL0
| [ ... KPTI exception return path ... ]
| .L_skip_tramp_exit_\@:
|
| ldr lr, [sp, #S_LR]
| add sp, sp, #PT_REGS_SIZE // restore sp
|
| alternative_if ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
| tlbi vale1, xzr
| dsb nsh
| alternative_else_nop_endif
| eret

The new structure means that the workaround is only applied when KPTI is
not in use; this is fine as noted in the documented implications of the
erratum:

| Pagetable isolation between EL0 and higher level ELs prevents the
| issue from occurring.

... and as per the workaround description quoted above, the workaround
is only necessary "If pagetable isolation is disabled".
History

Mon, 17 Mar 2025 15:30:00 +0000

Type Values Removed Values Added
First Time appeared Linux
Linux linux Kernel
Weaknesses CWE-787
CPEs cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:*
Vendors & Products Linux
Linux linux Kernel
Metrics cvssV3_1

{'score': 4.4, 'vector': 'CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:U/C:N/I:N/A:H'}

cvssV3_1

{'score': 5.5, 'vector': 'CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H'}


Wed, 13 Nov 2024 02:45:00 +0000

Type Values Removed Values Added
First Time appeared Redhat
Redhat enterprise Linux
CPEs cpe:/a:redhat:enterprise_linux:9
cpe:/o:redhat:enterprise_linux:9
Vendors & Products Redhat
Redhat enterprise Linux

Tue, 05 Nov 2024 10:15:00 +0000

Type Values Removed Values Added
Metrics ssvc

{'options': {'Automatable': 'no', 'Exploitation': 'none', 'Technical Impact': 'partial'}, 'version': '2.0.3'}


cve-icon MITRE

Status: PUBLISHED

Assigner: Linux

Published:

Updated: 2025-05-04T12:54:22.719Z

Reserved: 2024-02-19T14:20:24.150Z

Link: CVE-2024-26670

cve-icon Vulnrichment

Updated: 2024-08-02T00:14:12.513Z

cve-icon NVD

Status : Analyzed

Published: 2024-04-02T07:15:43.760

Modified: 2025-03-17T15:03:58.880

Link: CVE-2024-26670

cve-icon Redhat

Severity : Moderate

Publid Date: 2024-04-02T00:00:00Z

Links: CVE-2024-26670 - Bugzilla

cve-icon OpenCVE Enrichment

No data.