In the Linux kernel, the following vulnerability has been resolved:
fix bitmap corruption on close_range() with CLOSE_RANGE_UNSHARE
copy_fd_bitmaps(new, old, count) is expected to copy the first
count/BITS_PER_LONG bits from old->full_fds_bits[] and fill
the rest with zeroes. What it does is copying enough words
(BITS_TO_LONGS(count/BITS_PER_LONG)), then memsets the rest.
That works fine, *if* all bits past the cutoff point are
clear. Otherwise we are risking garbage from the last word
we'd copied.
For most of the callers that is true - expand_fdtable() has
count equal to old->max_fds, so there's no open descriptors
past count, let alone fully occupied words in ->open_fds[],
which is what bits in ->full_fds_bits[] correspond to.
The other caller (dup_fd()) passes sane_fdtable_size(old_fdt, max_fds),
which is the smallest multiple of BITS_PER_LONG that covers all
opened descriptors below max_fds. In the common case (copying on
fork()) max_fds is ~0U, so all opened descriptors will be below
it and we are fine, by the same reasons why the call in expand_fdtable()
is safe.
Unfortunately, there is a case where max_fds is less than that
and where we might, indeed, end up with junk in ->full_fds_bits[] -
close_range(from, to, CLOSE_RANGE_UNSHARE) with
* descriptor table being currently shared
* 'to' being above the current capacity of descriptor table
* 'from' being just under some chunk of opened descriptors.
In that case we end up with observably wrong behaviour - e.g. spawn
a child with CLONE_FILES, get all descriptors in range 0..127 open,
then close_range(64, ~0U, CLOSE_RANGE_UNSHARE) and watch dup(0) ending
up with descriptor #128, despite #64 being observably not open.
The minimally invasive fix would be to deal with that in dup_fd().
If this proves to add measurable overhead, we can go that way, but
let's try to fix copy_fd_bitmaps() first.
* new helper: bitmap_copy_and_expand(to, from, bits_to_copy, size).
* make copy_fd_bitmaps() take the bitmap size in words, rather than
bits; it's 'count' argument is always a multiple of BITS_PER_LONG,
so we are not losing any information, and that way we can use the
same helper for all three bitmaps - compiler will see that count
is a multiple of BITS_PER_LONG for the large ones, so it'll generate
plain memcpy()+memset().
Reproducer added to tools/testing/selftests/core/close_range_test.c
Metrics
Affected Vendors & Products
References
History
Tue, 05 Nov 2024 02:30:00 +0000
Type | Values Removed | Values Added |
---|---|---|
Weaknesses | CWE-457 |
Sun, 29 Sep 2024 16:30:00 +0000
Type | Values Removed | Values Added |
---|---|---|
Metrics |
ssvc
|
Fri, 13 Sep 2024 17:00:00 +0000
Type | Values Removed | Values Added |
---|---|---|
First Time appeared |
Linux
Linux linux Kernel |
|
Weaknesses | CWE-787 | |
CPEs | cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* cpe:2.3:o:linux:linux_kernel:6.11:rc1:*:*:*:*:*:* cpe:2.3:o:linux:linux_kernel:6.11:rc2:*:*:*:*:*:* cpe:2.3:o:linux:linux_kernel:6.11:rc3:*:*:*:*:*:* |
|
Vendors & Products |
Linux
Linux linux Kernel |
Wed, 11 Sep 2024 21:45:00 +0000
Type | Values Removed | Values Added |
---|---|---|
References |
| |
Metrics |
threat_severity
|
cvssV3_1
|
Wed, 11 Sep 2024 15:30:00 +0000
Type | Values Removed | Values Added |
---|---|---|
Description | In the Linux kernel, the following vulnerability has been resolved: fix bitmap corruption on close_range() with CLOSE_RANGE_UNSHARE copy_fd_bitmaps(new, old, count) is expected to copy the first count/BITS_PER_LONG bits from old->full_fds_bits[] and fill the rest with zeroes. What it does is copying enough words (BITS_TO_LONGS(count/BITS_PER_LONG)), then memsets the rest. That works fine, *if* all bits past the cutoff point are clear. Otherwise we are risking garbage from the last word we'd copied. For most of the callers that is true - expand_fdtable() has count equal to old->max_fds, so there's no open descriptors past count, let alone fully occupied words in ->open_fds[], which is what bits in ->full_fds_bits[] correspond to. The other caller (dup_fd()) passes sane_fdtable_size(old_fdt, max_fds), which is the smallest multiple of BITS_PER_LONG that covers all opened descriptors below max_fds. In the common case (copying on fork()) max_fds is ~0U, so all opened descriptors will be below it and we are fine, by the same reasons why the call in expand_fdtable() is safe. Unfortunately, there is a case where max_fds is less than that and where we might, indeed, end up with junk in ->full_fds_bits[] - close_range(from, to, CLOSE_RANGE_UNSHARE) with * descriptor table being currently shared * 'to' being above the current capacity of descriptor table * 'from' being just under some chunk of opened descriptors. In that case we end up with observably wrong behaviour - e.g. spawn a child with CLONE_FILES, get all descriptors in range 0..127 open, then close_range(64, ~0U, CLOSE_RANGE_UNSHARE) and watch dup(0) ending up with descriptor #128, despite #64 being observably not open. The minimally invasive fix would be to deal with that in dup_fd(). If this proves to add measurable overhead, we can go that way, but let's try to fix copy_fd_bitmaps() first. * new helper: bitmap_copy_and_expand(to, from, bits_to_copy, size). * make copy_fd_bitmaps() take the bitmap size in words, rather than bits; it's 'count' argument is always a multiple of BITS_PER_LONG, so we are not losing any information, and that way we can use the same helper for all three bitmaps - compiler will see that count is a multiple of BITS_PER_LONG for the large ones, so it'll generate plain memcpy()+memset(). Reproducer added to tools/testing/selftests/core/close_range_test.c | |
Title | fix bitmap corruption on close_range() with CLOSE_RANGE_UNSHARE | |
References |
|
|
MITRE
Status: PUBLISHED
Assigner: Linux
Published: 2024-09-11T15:13:57.732Z
Updated: 2024-11-05T09:44:17.352Z
Reserved: 2024-08-21T05:34:56.684Z
Link: CVE-2024-45025
Vulnrichment
Updated: 2024-09-29T15:46:59.529Z
NVD
Status : Analyzed
Published: 2024-09-11T16:15:07.440
Modified: 2024-09-13T16:30:07.073
Link: CVE-2024-45025
Redhat