In the Linux kernel, the following vulnerability has been resolved:
timers: Fix NULL function pointer race in timer_shutdown_sync()
There is a race condition between timer_shutdown_sync() and timer
expiration that can lead to hitting a WARN_ON in expire_timers().
The issue occurs when timer_shutdown_sync() clears the timer function
to NULL while the timer is still running on another CPU. The race
scenario looks like this:
CPU0 CPU1
<SOFTIRQ>
lock_timer_base()
expire_timers()
base->running_timer = timer;
unlock_timer_base()
[call_timer_fn enter]
mod_timer()
...
timer_shutdown_sync()
lock_timer_base()
// For now, will not detach the timer but only clear its function to NULL
if (base->running_timer != timer)
ret = detach_if_pending(timer, base, true);
if (shutdown)
timer->function = NULL;
unlock_timer_base()
[call_timer_fn exit]
lock_timer_base()
base->running_timer = NULL;
unlock_timer_base()
...
// Now timer is pending while its function set to NULL.
// next timer trigger
<SOFTIRQ>
expire_timers()
WARN_ON_ONCE(!fn) // hit
...
lock_timer_base()
// Now timer will detach
if (base->running_timer != timer)
ret = detach_if_pending(timer, base, true);
if (shutdown)
timer->function = NULL;
unlock_timer_base()
The problem is that timer_shutdown_sync() clears the timer function
regardless of whether the timer is currently running. This can leave a
pending timer with a NULL function pointer, which triggers the
WARN_ON_ONCE(!fn) check in expire_timers().
Fix this by only clearing the timer function when actually detaching the
timer. If the timer is running, leave the function pointer intact, which is
safe because the timer will be properly detached when it finishes running.
timers: Fix NULL function pointer race in timer_shutdown_sync()
There is a race condition between timer_shutdown_sync() and timer
expiration that can lead to hitting a WARN_ON in expire_timers().
The issue occurs when timer_shutdown_sync() clears the timer function
to NULL while the timer is still running on another CPU. The race
scenario looks like this:
CPU0 CPU1
<SOFTIRQ>
lock_timer_base()
expire_timers()
base->running_timer = timer;
unlock_timer_base()
[call_timer_fn enter]
mod_timer()
...
timer_shutdown_sync()
lock_timer_base()
// For now, will not detach the timer but only clear its function to NULL
if (base->running_timer != timer)
ret = detach_if_pending(timer, base, true);
if (shutdown)
timer->function = NULL;
unlock_timer_base()
[call_timer_fn exit]
lock_timer_base()
base->running_timer = NULL;
unlock_timer_base()
...
// Now timer is pending while its function set to NULL.
// next timer trigger
<SOFTIRQ>
expire_timers()
WARN_ON_ONCE(!fn) // hit
...
lock_timer_base()
// Now timer will detach
if (base->running_timer != timer)
ret = detach_if_pending(timer, base, true);
if (shutdown)
timer->function = NULL;
unlock_timer_base()
The problem is that timer_shutdown_sync() clears the timer function
regardless of whether the timer is currently running. This can leave a
pending timer with a NULL function pointer, which triggers the
WARN_ON_ONCE(!fn) check in expire_timers().
Fix this by only clearing the timer function when actually detaching the
timer. If the timer is running, leave the function pointer intact, which is
safe because the timer will be properly detached when it finishes running.
Metrics
Affected Vendors & Products
Advisories
No advisories yet.
Fixes
Solution
No solution given by the vendor.
Workaround
No workaround given by the vendor.
References
History
Tue, 16 Dec 2025 14:00:00 +0000
| Type | Values Removed | Values Added |
|---|---|---|
| Description | In the Linux kernel, the following vulnerability has been resolved: timers: Fix NULL function pointer race in timer_shutdown_sync() There is a race condition between timer_shutdown_sync() and timer expiration that can lead to hitting a WARN_ON in expire_timers(). The issue occurs when timer_shutdown_sync() clears the timer function to NULL while the timer is still running on another CPU. The race scenario looks like this: CPU0 CPU1 <SOFTIRQ> lock_timer_base() expire_timers() base->running_timer = timer; unlock_timer_base() [call_timer_fn enter] mod_timer() ... timer_shutdown_sync() lock_timer_base() // For now, will not detach the timer but only clear its function to NULL if (base->running_timer != timer) ret = detach_if_pending(timer, base, true); if (shutdown) timer->function = NULL; unlock_timer_base() [call_timer_fn exit] lock_timer_base() base->running_timer = NULL; unlock_timer_base() ... // Now timer is pending while its function set to NULL. // next timer trigger <SOFTIRQ> expire_timers() WARN_ON_ONCE(!fn) // hit ... lock_timer_base() // Now timer will detach if (base->running_timer != timer) ret = detach_if_pending(timer, base, true); if (shutdown) timer->function = NULL; unlock_timer_base() The problem is that timer_shutdown_sync() clears the timer function regardless of whether the timer is currently running. This can leave a pending timer with a NULL function pointer, which triggers the WARN_ON_ONCE(!fn) check in expire_timers(). Fix this by only clearing the timer function when actually detaching the timer. If the timer is running, leave the function pointer intact, which is safe because the timer will be properly detached when it finishes running. | |
| Title | timers: Fix NULL function pointer race in timer_shutdown_sync() | |
| First Time appeared |
Linux
Linux linux Kernel |
|
| CPEs | cpe:2.3:o:linux:linux_kernel:*:*:*:*:*:*:*:* | |
| Vendors & Products |
Linux
Linux linux Kernel |
|
| References |
|
|
Projects
Sign in to view the affected projects.
Status: PUBLISHED
Assigner: Linux
Published:
Updated: 2025-12-16T13:57:09.728Z
Reserved: 2025-12-16T13:41:40.256Z
Link: CVE-2025-68214
No data.
Status : Received
Published: 2025-12-16T14:15:54.363
Modified: 2025-12-16T14:15:54.363
Link: CVE-2025-68214
No data.
OpenCVE Enrichment
No data.
Weaknesses
No weakness.