Search Results (324549 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-61539 2 Myupb, Ultimate Php Board 2 Ultimate Php Board, Ultimate Php Board 2025-10-21 6.1 Medium
Cross site scripting (XSS) vulnerability in Ultimate PHP Board 2.2.7 via the u_name parameter in lostpassword.php.
CVE-2022-49503 1 Linux 1 Linux Kernel 2025-10-21 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ath9k_htc: fix potential out of bounds access with invalid rxstatus->rs_keyix The "rxstatus->rs_keyix" eventually gets passed to test_bit() so we need to ensure that it is within the bitmap. drivers/net/wireless/ath/ath9k/common.c:46 ath9k_cmn_rx_accept() error: passing untrusted data 'rx_stats->rs_keyix' to 'test_bit()'
CVE-2022-49506 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Add vblank register/unregister callback functions We encountered a kernel panic issue that callback data will be NULL when it's using in ovl irq handler. There is a timing issue between mtk_disp_ovl_irq_handler() and mtk_ovl_disable_vblank(). To resolve this issue, we use the flow to register/unregister vblank cb: - Register callback function and callback data when crtc creates. - Unregister callback function and callback data when crtc destroies. With this solution, we can assure callback data will not be NULL when vblank is disable.
CVE-2022-49511 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fbdev: defio: fix the pagelist corruption Easily hit the below list corruption: == list_add corruption. prev->next should be next (ffffffffc0ceb090), but was ffffec604507edc8. (prev=ffffec604507edc8). WARNING: CPU: 65 PID: 3959 at lib/list_debug.c:26 __list_add_valid+0x53/0x80 CPU: 65 PID: 3959 Comm: fbdev Tainted: G U RIP: 0010:__list_add_valid+0x53/0x80 Call Trace: <TASK> fb_deferred_io_mkwrite+0xea/0x150 do_page_mkwrite+0x57/0xc0 do_wp_page+0x278/0x2f0 __handle_mm_fault+0xdc2/0x1590 handle_mm_fault+0xdd/0x2c0 do_user_addr_fault+0x1d3/0x650 exc_page_fault+0x77/0x180 ? asm_exc_page_fault+0x8/0x30 asm_exc_page_fault+0x1e/0x30 RIP: 0033:0x7fd98fc8fad1 == Figure out the race happens when one process is adding &page->lru into the pagelist tail in fb_deferred_io_mkwrite(), another process is re-initializing the same &page->lru in fb_deferred_io_fault(), which is not protected by the lock. This fix is to init all the page lists one time during initialization, it not only fixes the list corruption, but also avoids INIT_LIST_HEAD() redundantly. V2: change "int i" to "unsigned int i" (Geert Uytterhoeven)
CVE-2022-49512 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mtd: rawnand: denali: Use managed device resources All of the resources used by this driver has managed interfaces, so use them. Otherwise we will get the following splat: [ 4.472703] denali-nand-pci 0000:00:05.0: timeout while waiting for irq 0x1000 [ 4.474071] denali-nand-pci: probe of 0000:00:05.0 failed with error -5 [ 4.473538] nand: No NAND device found [ 4.474068] BUG: unable to handle page fault for address: ffffc90005000410 [ 4.475169] #PF: supervisor write access in kernel mode [ 4.475579] #PF: error_code(0x0002) - not-present page [ 4.478362] RIP: 0010:iowrite32+0x9/0x50 [ 4.486068] Call Trace: [ 4.486269] <IRQ> [ 4.486443] denali_isr+0x15b/0x300 [denali] [ 4.486788] ? denali_direct_write+0x50/0x50 [denali] [ 4.487189] __handle_irq_event_percpu+0x161/0x3b0 [ 4.487571] handle_irq_event+0x7d/0x1b0 [ 4.487884] handle_fasteoi_irq+0x2b0/0x770 [ 4.488219] __common_interrupt+0xc8/0x1b0 [ 4.488549] common_interrupt+0x9a/0xc0
CVE-2022-49513 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cpufreq: governor: Use kobject release() method to free dbs_data The struct dbs_data embeds a struct gov_attr_set and the struct gov_attr_set embeds a kobject. Since every kobject must have a release() method and we can't use kfree() to free it directly, so introduce cpufreq_dbs_data_release() to release the dbs_data via the kobject::release() method. This fixes the calltrace like below: ODEBUG: free active (active state 0) object type: timer_list hint: delayed_work_timer_fn+0x0/0x34 WARNING: CPU: 12 PID: 810 at lib/debugobjects.c:505 debug_print_object+0xb8/0x100 Modules linked in: CPU: 12 PID: 810 Comm: sh Not tainted 5.16.0-next-20220120-yocto-standard+ #536 Hardware name: Marvell OcteonTX CN96XX board (DT) pstate: 60400009 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) pc : debug_print_object+0xb8/0x100 lr : debug_print_object+0xb8/0x100 sp : ffff80001dfcf9a0 x29: ffff80001dfcf9a0 x28: 0000000000000001 x27: ffff0001464f0000 x26: 0000000000000000 x25: ffff8000090e3f00 x24: ffff80000af60210 x23: ffff8000094dfb78 x22: ffff8000090e3f00 x21: ffff0001080b7118 x20: ffff80000aeb2430 x19: ffff800009e8f5e0 x18: 0000000000000000 x17: 0000000000000002 x16: 00004d62e58be040 x15: 013590470523aff8 x14: ffff8000090e1828 x13: 0000000001359047 x12: 00000000f5257d14 x11: 0000000000040591 x10: 0000000066c1ffea x9 : ffff8000080d15e0 x8 : ffff80000a1765a8 x7 : 0000000000000000 x6 : 0000000000000001 x5 : ffff800009e8c000 x4 : ffff800009e8c760 x3 : 0000000000000000 x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0001474ed040 Call trace: debug_print_object+0xb8/0x100 __debug_check_no_obj_freed+0x1d0/0x25c debug_check_no_obj_freed+0x24/0xa0 kfree+0x11c/0x440 cpufreq_dbs_governor_exit+0xa8/0xac cpufreq_exit_governor+0x44/0x90 cpufreq_set_policy+0x29c/0x570 store_scaling_governor+0x110/0x154 store+0xb0/0xe0 sysfs_kf_write+0x58/0x84 kernfs_fop_write_iter+0x12c/0x1c0 new_sync_write+0xf0/0x18c vfs_write+0x1cc/0x220 ksys_write+0x74/0x100 __arm64_sys_write+0x28/0x3c invoke_syscall.constprop.0+0x58/0xf0 do_el0_svc+0x70/0x170 el0_svc+0x54/0x190 el0t_64_sync_handler+0xa4/0x130 el0t_64_sync+0x1a0/0x1a4 irq event stamp: 189006 hardirqs last enabled at (189005): [<ffff8000080849d0>] finish_task_switch.isra.0+0xe0/0x2c0 hardirqs last disabled at (189006): [<ffff8000090667a4>] el1_dbg+0x24/0xa0 softirqs last enabled at (188966): [<ffff8000080106d0>] __do_softirq+0x4b0/0x6a0 softirqs last disabled at (188957): [<ffff80000804a618>] __irq_exit_rcu+0x108/0x1a4 [ rjw: Because can be freed by the gov_attr_set_put() in cpufreq_dbs_governor_exit() now, it is also necessary to put the invocation of the governor ->exit() callback into the new cpufreq_dbs_data_release() function. ]
CVE-2022-49515 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-21 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ASoC: cs35l41: Fix an out-of-bounds access in otp_packed_element_t The CS35L41_NUM_OTP_ELEM is 100, but only 99 entries are defined in the array otp_map_1/2[CS35L41_NUM_OTP_ELEM], this will trigger UBSAN to report a shift-out-of-bounds warning in the cs35l41_otp_unpack() since the last entry in the array will result in GENMASK(-1, 0). UBSAN reports this problem: UBSAN: shift-out-of-bounds in /home/hwang4/build/jammy/jammy/sound/soc/codecs/cs35l41-lib.c:836:8 shift exponent 64 is too large for 64-bit type 'long unsigned int' CPU: 10 PID: 595 Comm: systemd-udevd Not tainted 5.15.0-23-generic #23 Hardware name: LENOVO \x02MFG_IN_GO/\x02MFG_IN_GO, BIOS N3GET19W (1.00 ) 03/11/2022 Call Trace: <TASK> show_stack+0x52/0x58 dump_stack_lvl+0x4a/0x5f dump_stack+0x10/0x12 ubsan_epilogue+0x9/0x45 __ubsan_handle_shift_out_of_bounds.cold+0x61/0xef ? regmap_unlock_mutex+0xe/0x10 cs35l41_otp_unpack.cold+0x1c6/0x2b2 [snd_soc_cs35l41_lib] cs35l41_hda_probe+0x24f/0x33a [snd_hda_scodec_cs35l41] cs35l41_hda_i2c_probe+0x65/0x90 [snd_hda_scodec_cs35l41_i2c] ? cs35l41_hda_i2c_remove+0x20/0x20 [snd_hda_scodec_cs35l41_i2c] i2c_device_probe+0x252/0x2b0
CVE-2022-49518 1 Linux 1 Linux Kernel 2025-10-21 7.1 High
In the Linux kernel, the following vulnerability has been resolved: ASoC: SOF: ipc3-topology: Correct get_control_data for non bytes payload It is possible to craft a topology where sof_get_control_data() would do out of bounds access because it expects that it is only called when the payload is bytes type. Confusingly it also handles other types of controls, but the payload parsing implementation is only valid for bytes. Fix the code to count the non bytes controls and instead of storing a pointer to sof_abi_hdr in sof_widget_data (which is only valid for bytes), store the pointer to the data itself and add a new member to save the size of the data. In case of non bytes controls we store the pointer to the chanv itself, which is just an array of values at the end. In case of bytes control, drop the wrong cdata->data (wdata[i].pdata) check against NULL since it is incorrect and invalid in this context. The data is pointing to the end of cdata struct, so it should never be null.
CVE-2022-49519 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-21 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ath10k: skip ath10k_halt during suspend for driver state RESTARTING Double free crash is observed when FW recovery(caused by wmi timeout/crash) is followed by immediate suspend event. The FW recovery is triggered by ath10k_core_restart() which calls driver clean up via ath10k_halt(). When the suspend event occurs between the FW recovery, the restart worker thread is put into frozen state until suspend completes. The suspend event triggers ath10k_stop() which again triggers ath10k_halt() The double invocation of ath10k_halt() causes ath10k_htt_rx_free() to be called twice(Note: ath10k_htt_rx_alloc was not called by restart worker thread because of its frozen state), causing the crash. To fix this, during the suspend flow, skip call to ath10k_halt() in ath10k_stop() when the current driver state is ATH10K_STATE_RESTARTING. Also, for driver state ATH10K_STATE_RESTARTING, call ath10k_wait_for_suspend() in ath10k_stop(). This is because call to ath10k_wait_for_suspend() is skipped later in [ath10k_halt() > ath10k_core_stop()] for the driver state ATH10K_STATE_RESTARTING. The frozen restart worker thread will be cancelled during resume when the device comes out of suspend. Below is the crash stack for reference: [ 428.469167] ------------[ cut here ]------------ [ 428.469180] kernel BUG at mm/slub.c:4150! [ 428.469193] invalid opcode: 0000 [#1] PREEMPT SMP NOPTI [ 428.469219] Workqueue: events_unbound async_run_entry_fn [ 428.469230] RIP: 0010:kfree+0x319/0x31b [ 428.469241] RSP: 0018:ffffa1fac015fc30 EFLAGS: 00010246 [ 428.469247] RAX: ffffedb10419d108 RBX: ffff8c05262b0000 [ 428.469252] RDX: ffff8c04a8c07000 RSI: 0000000000000000 [ 428.469256] RBP: ffffa1fac015fc78 R08: 0000000000000000 [ 428.469276] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 428.469285] Call Trace: [ 428.469295] ? dma_free_attrs+0x5f/0x7d [ 428.469320] ath10k_core_stop+0x5b/0x6f [ 428.469336] ath10k_halt+0x126/0x177 [ 428.469352] ath10k_stop+0x41/0x7e [ 428.469387] drv_stop+0x88/0x10e [ 428.469410] __ieee80211_suspend+0x297/0x411 [ 428.469441] rdev_suspend+0x6e/0xd0 [ 428.469462] wiphy_suspend+0xb1/0x105 [ 428.469483] ? name_show+0x2d/0x2d [ 428.469490] dpm_run_callback+0x8c/0x126 [ 428.469511] ? name_show+0x2d/0x2d [ 428.469517] __device_suspend+0x2e7/0x41b [ 428.469523] async_suspend+0x1f/0x93 [ 428.469529] async_run_entry_fn+0x3d/0xd1 [ 428.469535] process_one_work+0x1b1/0x329 [ 428.469541] worker_thread+0x213/0x372 [ 428.469547] kthread+0x150/0x15f [ 428.469552] ? pr_cont_work+0x58/0x58 [ 428.469558] ? kthread_blkcg+0x31/0x31 Tested-on: QCA6174 hw3.2 PCI WLAN.RM.4.4.1-00288-QCARMSWPZ-1
CVE-2022-49528 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: i2c: dw9714: Disable the regulator when the driver fails to probe When the driver fails to probe, we will get the following splat: [ 59.305988] ------------[ cut here ]------------ [ 59.306417] WARNING: CPU: 2 PID: 395 at drivers/regulator/core.c:2257 _regulator_put+0x3ec/0x4e0 [ 59.310345] RIP: 0010:_regulator_put+0x3ec/0x4e0 [ 59.318362] Call Trace: [ 59.318582] <TASK> [ 59.318765] regulator_put+0x1f/0x30 [ 59.319058] devres_release_group+0x319/0x3d0 [ 59.319420] i2c_device_probe+0x766/0x940 Fix this by disabling the regulator in error handling.
CVE-2022-49533 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ath11k: Change max no of active probe SSID and BSSID to fw capability The maximum number of SSIDs in a for active probe requests is currently reported as 16 (WLAN_SCAN_PARAMS_MAX_SSID) when registering the driver. The scan_req_params structure only has the capacity to hold 10 SSIDs. This leads to a buffer overflow which can be triggered from wpa_supplicant in userspace. When copying the SSIDs into the scan_req_params structure in the ath11k_mac_op_hw_scan route, it can overwrite the extraie pointer. Firmware supports 16 ssid * 4 bssid, for each ssid 4 bssid combo probe request will be sent, so totally 64 probe requests supported. So set both max ssid and bssid to 16 and 4 respectively. Remove the redundant macros of ssid and bssid. Tested-on: IPQ8074 hw2.0 AHB WLAN.HK.2.7.0.1-01300-QCAHKSWPL_SILICONZ-1
CVE-2022-49539 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: rtw89: ser: fix CAM leaks occurring in L2 reset The CAM, meaning address CAM and bssid CAM here, will get leaks during SER (system error recover) L2 reset process and ieee80211_restart_hw() which is called by L2 reset process eventually. The normal flow would be like -> add interface (acquire 1) -> enter ips (release 1) -> leave ips (acquire 1) -> connection (occupy 1) <(A) 1 leak after L2 reset if non-sec connection> The ieee80211_restart_hw() flow (under connection) -> ieee80211 reconfig -> add interface (acquire 1) -> leave ips (acquire 1) -> connection (occupy (A) + 2) <(B) 1 more leak> Originally, CAM is released before HW restart only if connection is under security. Now, release CAM whatever connection it is to fix leak in (A). OTOH, check if CAM is already valid to avoid acquiring multiple times to fix (B). Besides, if AP mode, release address CAM of all stations before HW restart.
CVE-2025-53860 1 F5 3 F5os-a, R10920-df, R5920-df 2025-10-21 4.1 Medium
A vulnerability exists in F5OS-A software that allows a highly privileged authenticated attacker to access sensitive FIPS hardware security module (HSM) information on F5 rSeries systems.  Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated.
CVE-2022-49189 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: qcom: clk-rcg2: Update logic to calculate D value for RCG The display pixel clock has a requirement on certain newer platforms to support M/N as (2/3) and the final D value calculated results in underflow errors. As the current implementation does not check for D value is within the accepted range for a given M & N value. Update the logic to calculate the final D value based on the range.
CVE-2022-49192 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drivers: ethernet: cpsw: fix panic when interrupt coaleceing is set via ethtool cpsw_ethtool_begin directly returns the result of pm_runtime_get_sync when successful. pm_runtime_get_sync returns -error code on failure and 0 on successful resume but also 1 when the device is already active. So the common case for cpsw_ethtool_begin is to return 1. That leads to inconsistent calls to pm_runtime_put in the call-chain so that pm_runtime_put is called one too many times and as result leaving the cpsw dev behind suspended. The suspended cpsw dev leads to an access violation later on by different parts of the cpsw driver. Fix this by calling the return-friendly pm_runtime_resume_and_get function.
CVE-2022-49193 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ice: fix 'scheduling while atomic' on aux critical err interrupt There's a kernel BUG splat on processing aux critical error interrupts in ice_misc_intr(): [ 2100.917085] BUG: scheduling while atomic: swapper/15/0/0x00010000 ... [ 2101.060770] Call Trace: [ 2101.063229] <IRQ> [ 2101.065252] dump_stack+0x41/0x60 [ 2101.068587] __schedule_bug.cold.100+0x4c/0x58 [ 2101.073060] __schedule+0x6a4/0x830 [ 2101.076570] schedule+0x35/0xa0 [ 2101.079727] schedule_preempt_disabled+0xa/0x10 [ 2101.084284] __mutex_lock.isra.7+0x310/0x420 [ 2101.088580] ? ice_misc_intr+0x201/0x2e0 [ice] [ 2101.093078] ice_send_event_to_aux+0x25/0x70 [ice] [ 2101.097921] ice_misc_intr+0x220/0x2e0 [ice] [ 2101.102232] __handle_irq_event_percpu+0x40/0x180 [ 2101.106965] handle_irq_event_percpu+0x30/0x80 [ 2101.111434] handle_irq_event+0x36/0x53 [ 2101.115292] handle_edge_irq+0x82/0x190 [ 2101.119148] handle_irq+0x1c/0x30 [ 2101.122480] do_IRQ+0x49/0xd0 [ 2101.125465] common_interrupt+0xf/0xf [ 2101.129146] </IRQ> ... As Andrew correctly mentioned previously[0], the following call ladder happens: ice_misc_intr() <- hardirq ice_send_event_to_aux() device_lock() mutex_lock() might_sleep() might_resched() <- oops Add a new PF state bit which indicates that an aux critical error occurred and serve it in ice_service_task() in process context. The new ice_pf::oicr_err_reg is read-write in both hardirq and process contexts, but only 3 bits of non-critical data probably aren't worth explicit synchronizing (and they're even in the same byte [31:24]). [0] https://lore.kernel.org/all/YeSRUVmrdmlUXHDn@lunn.ch
CVE-2022-49194 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net: bcmgenet: Use stronger register read/writes to assure ordering GCC12 appears to be much smarter about its dependency tracking and is aware that the relaxed variants are just normal loads and stores and this is causing problems like: [ 210.074549] ------------[ cut here ]------------ [ 210.079223] NETDEV WATCHDOG: enabcm6e4ei0 (bcmgenet): transmit queue 1 timed out [ 210.086717] WARNING: CPU: 1 PID: 0 at net/sched/sch_generic.c:529 dev_watchdog+0x234/0x240 [ 210.095044] Modules linked in: genet(E) nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat] [ 210.146561] ACPI CPPC: PCC check channel failed for ss: 0. ret=-110 [ 210.146927] CPU: 1 PID: 0 Comm: swapper/1 Tainted: G E 5.17.0-rc7G12+ #58 [ 210.153226] CPPC Cpufreq:cppc_scale_freq_workfn: failed to read perf counters [ 210.161349] Hardware name: Raspberry Pi Foundation Raspberry Pi 4 Model B/Raspberry Pi 4 Model B, BIOS EDK2-DEV 02/08/2022 [ 210.161353] pstate: 80400005 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 210.161358] pc : dev_watchdog+0x234/0x240 [ 210.161364] lr : dev_watchdog+0x234/0x240 [ 210.161368] sp : ffff8000080a3a40 [ 210.161370] x29: ffff8000080a3a40 x28: ffffcd425af87000 x27: ffff8000080a3b20 [ 210.205150] x26: ffffcd425aa00000 x25: 0000000000000001 x24: ffffcd425af8ec08 [ 210.212321] x23: 0000000000000100 x22: ffffcd425af87000 x21: ffff55b142688000 [ 210.219491] x20: 0000000000000001 x19: ffff55b1426884c8 x18: ffffffffffffffff [ 210.226661] x17: 64656d6974203120 x16: 0000000000000001 x15: 6d736e617274203a [ 210.233831] x14: 2974656e65676d63 x13: ffffcd4259c300d8 x12: ffffcd425b07d5f0 [ 210.241001] x11: 00000000ffffffff x10: ffffcd425b07d5f0 x9 : ffffcd4258bdad9c [ 210.248171] x8 : 00000000ffffdfff x7 : 000000000000003f x6 : 0000000000000000 [ 210.255341] x5 : 0000000000000000 x4 : 0000000000000000 x3 : 0000000000001000 [ 210.262511] x2 : 0000000000001000 x1 : 0000000000000005 x0 : 0000000000000044 [ 210.269682] Call trace: [ 210.272133] dev_watchdog+0x234/0x240 [ 210.275811] call_timer_fn+0x3c/0x15c [ 210.279489] __run_timers.part.0+0x288/0x310 [ 210.283777] run_timer_softirq+0x48/0x80 [ 210.287716] __do_softirq+0x128/0x360 [ 210.291392] __irq_exit_rcu+0x138/0x140 [ 210.295243] irq_exit_rcu+0x1c/0x30 [ 210.298745] el1_interrupt+0x38/0x54 [ 210.302334] el1h_64_irq_handler+0x18/0x24 [ 210.306445] el1h_64_irq+0x7c/0x80 [ 210.309857] arch_cpu_idle+0x18/0x2c [ 210.313445] default_idle_call+0x4c/0x140 [ 210.317470] cpuidle_idle_call+0x14c/0x1a0 [ 210.321584] do_idle+0xb0/0x100 [ 210.324737] cpu_startup_entry+0x30/0x8c [ 210.328675] secondary_start_kernel+0xe4/0x110 [ 210.333138] __secondary_switched+0x94/0x98 The assumption when these were relaxed seems to be that device memory would be mapped non reordering, and that other constructs (spinlocks/etc) would provide the barriers to assure that packet data and in memory rings/queues were ordered with respect to device register reads/writes. This itself seems a bit sketchy, but the real problem with GCC12 is that it is moving the actual reads/writes around at will as though they were independent operations when in truth they are not, but the compiler can't know that. When looking at the assembly dumps for many of these routines its possible to see very clean, but not strictly in program order operations occurring as the compiler would be free to do if these weren't actually register reads/write operations. Its possible to suppress the timeout with a liberal bit of dma_mb()'s sprinkled around but the device still seems unable to reliably send/receive data. A better plan is to use the safer readl/writel everywhere. Since this partially reverts an older commit, which notes the use of the relaxed variants for performance reasons. I would suggest that any performance problems ---truncated---
CVE-2022-49199 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: RDMA/nldev: Prevent underflow in nldev_stat_set_counter_dynamic_doit() This code checks "index" for an upper bound but it does not check for negatives. Change the type to unsigned to prevent underflows.
CVE-2022-49204 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf, sockmap: Fix more uncharged while msg has more_data In tcp_bpf_send_verdict(), if msg has more data after tcp_bpf_sendmsg_redir(): tcp_bpf_send_verdict() tosend = msg->sg.size //msg->sg.size = 22220 case __SK_REDIRECT: sk_msg_return() //uncharged msg->sg.size(22220) sk->sk_forward_alloc tcp_bpf_sendmsg_redir() //after tcp_bpf_sendmsg_redir, msg->sg.size=11000 goto more_data; tosend = msg->sg.size //msg->sg.size = 11000 case __SK_REDIRECT: sk_msg_return() //uncharged msg->sg.size(11000) to sk->sk_forward_alloc The msg->sg.size(11000) has been uncharged twice, to fix we can charge the remaining msg->sg.size before goto more data. This issue can cause the following info: WARNING: CPU: 0 PID: 9860 at net/core/stream.c:208 sk_stream_kill_queues+0xd4/0x1a0 Call Trace: <TASK> inet_csk_destroy_sock+0x55/0x110 __tcp_close+0x279/0x470 tcp_close+0x1f/0x60 inet_release+0x3f/0x80 __sock_release+0x3d/0xb0 sock_close+0x11/0x20 __fput+0x92/0x250 task_work_run+0x6a/0xa0 do_exit+0x33b/0xb60 do_group_exit+0x2f/0xa0 get_signal+0xb6/0x950 arch_do_signal_or_restart+0xac/0x2a0 ? vfs_write+0x237/0x290 exit_to_user_mode_prepare+0xa9/0x200 syscall_exit_to_user_mode+0x12/0x30 do_syscall_64+0x46/0x80 entry_SYSCALL_64_after_hwframe+0x44/0xae </TASK> WARNING: CPU: 0 PID: 2136 at net/ipv4/af_inet.c:155 inet_sock_destruct+0x13c/0x260 Call Trace: <TASK> __sk_destruct+0x24/0x1f0 sk_psock_destroy+0x19b/0x1c0 process_one_work+0x1b3/0x3c0 worker_thread+0x30/0x350 ? process_one_work+0x3c0/0x3c0 kthread+0xe6/0x110 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x22/0x30 </TASK>
CVE-2022-49217 1 Linux 1 Linux Kernel 2025-10-21 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: pm8001: Fix abort all task initialization In pm80xx_send_abort_all(), the n_elem field of the ccb used is not initialized to 0. This missing initialization sometimes lead to the task completion path seeing the ccb with a non-zero n_elem resulting in the execution of invalid dma_unmap_sg() calls in pm8001_ccb_task_free(), causing a crash such as: [ 197.676341] RIP: 0010:iommu_dma_unmap_sg+0x6d/0x280 [ 197.700204] RSP: 0018:ffff889bbcf89c88 EFLAGS: 00010012 [ 197.705485] RAX: dffffc0000000000 RBX: 0000000000000000 RCX: ffffffff83d0bda0 [ 197.712687] RDX: 0000000000000002 RSI: 0000000000000000 RDI: ffff88810dffc0d0 [ 197.719887] RBP: 0000000000000000 R08: 0000000000000000 R09: ffff8881c790098b [ 197.727089] R10: ffffed1038f20131 R11: 0000000000000001 R12: 0000000000000000 [ 197.734296] R13: ffff88810dffc0d0 R14: 0000000000000010 R15: 0000000000000000 [ 197.741493] FS: 0000000000000000(0000) GS:ffff889bbcf80000(0000) knlGS:0000000000000000 [ 197.749659] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 197.755459] CR2: 00007f16c1b42734 CR3: 0000000004814000 CR4: 0000000000350ee0 [ 197.762656] Call Trace: [ 197.765127] <IRQ> [ 197.767162] pm8001_ccb_task_free+0x5f1/0x820 [pm80xx] [ 197.772364] ? do_raw_spin_unlock+0x54/0x220 [ 197.776680] pm8001_mpi_task_abort_resp+0x2ce/0x4f0 [pm80xx] [ 197.782406] process_oq+0xe85/0x7890 [pm80xx] [ 197.786817] ? lock_acquire+0x194/0x490 [ 197.790697] ? handle_irq_event+0x10e/0x1b0 [ 197.794920] ? mpi_sata_completion+0x2d70/0x2d70 [pm80xx] [ 197.800378] ? __wake_up_bit+0x100/0x100 [ 197.804340] ? lock_is_held_type+0x98/0x110 [ 197.808565] pm80xx_chip_isr+0x94/0x130 [pm80xx] [ 197.813243] tasklet_action_common.constprop.0+0x24b/0x2f0 [ 197.818785] __do_softirq+0x1b5/0x82d [ 197.822485] ? do_raw_spin_unlock+0x54/0x220 [ 197.826799] __irq_exit_rcu+0x17e/0x1e0 [ 197.830678] irq_exit_rcu+0xa/0x20 [ 197.834114] common_interrupt+0x78/0x90 [ 197.840051] </IRQ> [ 197.844236] <TASK> [ 197.848397] asm_common_interrupt+0x1e/0x40 Avoid this issue by always initializing the ccb n_elem field to 0 in pm8001_send_abort_all(), pm8001_send_read_log() and pm80xx_send_abort_all().