| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
tracing/osnoise: Fix resetting of tracepoints
If a timerlat tracer is started with the osnoise option OSNOISE_WORKLOAD
disabled, but then that option is enabled and timerlat is removed, the
tracepoints that were enabled on timerlat registration do not get
disabled. If the option is disabled again and timelat is started, then it
triggers a warning in the tracepoint code due to registering the
tracepoint again without ever disabling it.
Do not use the same user space defined options to know to disable the
tracepoints when timerlat is removed. Instead, set a global flag when it
is enabled and use that flag to know to disable the events.
~# echo NO_OSNOISE_WORKLOAD > /sys/kernel/tracing/osnoise/options
~# echo timerlat > /sys/kernel/tracing/current_tracer
~# echo OSNOISE_WORKLOAD > /sys/kernel/tracing/osnoise/options
~# echo nop > /sys/kernel/tracing/current_tracer
~# echo NO_OSNOISE_WORKLOAD > /sys/kernel/tracing/osnoise/options
~# echo timerlat > /sys/kernel/tracing/current_tracer
Triggers:
------------[ cut here ]------------
WARNING: CPU: 6 PID: 1337 at kernel/tracepoint.c:294 tracepoint_add_func+0x3b6/0x3f0
Modules linked in:
CPU: 6 UID: 0 PID: 1337 Comm: rtla Not tainted 6.13.0-rc4-test-00018-ga867c441128e-dirty #73
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:tracepoint_add_func+0x3b6/0x3f0
Code: 48 8b 53 28 48 8b 73 20 4c 89 04 24 e8 23 59 11 00 4c 8b 04 24 e9 36 fe ff ff 0f 0b b8 ea ff ff ff 45 84 e4 0f 84 68 fe ff ff <0f> 0b e9 61 fe ff ff 48 8b 7b 18 48 85 ff 0f 84 4f ff ff ff 49 8b
RSP: 0018:ffffb9b003a87ca0 EFLAGS: 00010202
RAX: 00000000ffffffef RBX: ffffffff92f30860 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff9bf59e91ccd0 RDI: ffffffff913b6410
RBP: 000000000000000a R08: 00000000000005c7 R09: 0000000000000002
R10: ffffb9b003a87ce0 R11: 0000000000000002 R12: 0000000000000001
R13: ffffb9b003a87ce0 R14: ffffffffffffffef R15: 0000000000000008
FS: 00007fce81209240(0000) GS:ffff9bf6fdd00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000055e99b728000 CR3: 00000001277c0002 CR4: 0000000000172ef0
Call Trace:
<TASK>
? __warn.cold+0xb7/0x14d
? tracepoint_add_func+0x3b6/0x3f0
? report_bug+0xea/0x170
? handle_bug+0x58/0x90
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? __pfx_trace_sched_migrate_callback+0x10/0x10
? tracepoint_add_func+0x3b6/0x3f0
? __pfx_trace_sched_migrate_callback+0x10/0x10
? __pfx_trace_sched_migrate_callback+0x10/0x10
tracepoint_probe_register+0x78/0xb0
? __pfx_trace_sched_migrate_callback+0x10/0x10
osnoise_workload_start+0x2b5/0x370
timerlat_tracer_init+0x76/0x1b0
tracing_set_tracer+0x244/0x400
tracing_set_trace_write+0xa0/0xe0
vfs_write+0xfc/0x570
? do_sys_openat2+0x9c/0xe0
ksys_write+0x72/0xf0
do_syscall_64+0x79/0x1c0
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/mlx5: Fix a race for an ODP MR which leads to CQE with error
This patch addresses a race condition for an ODP MR that can result in a
CQE with an error on the UMR QP.
During the __mlx5_ib_dereg_mr() flow, the following sequence of calls
occurs:
mlx5_revoke_mr()
mlx5r_umr_revoke_mr()
mlx5r_umr_post_send_wait()
At this point, the lkey is freed from the hardware's perspective.
However, concurrently, mlx5_ib_invalidate_range() might be triggered by
another task attempting to invalidate a range for the same freed lkey.
This task will:
- Acquire the umem_odp->umem_mutex lock.
- Call mlx5r_umr_update_xlt() on the UMR QP.
- Since the lkey has already been freed, this can lead to a CQE error,
causing the UMR QP to enter an error state [1].
To resolve this race condition, the umem_odp->umem_mutex lock is now also
acquired as part of the mlx5_revoke_mr() scope. Upon successful revoke,
we set umem_odp->private which points to that MR to NULL, preventing any
further invalidation attempts on its lkey.
[1] From dmesg:
infiniband rocep8s0f0: dump_cqe:277:(pid 0): WC error: 6, Message: memory bind operation error
cqe_dump: 00000000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
cqe_dump: 00000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
cqe_dump: 00000020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
cqe_dump: 00000030: 00 00 00 00 08 00 78 06 25 00 11 b9 00 0e dd d2
WARNING: CPU: 15 PID: 1506 at drivers/infiniband/hw/mlx5/umr.c:394 mlx5r_umr_post_send_wait+0x15a/0x2b0 [mlx5_ib]
Modules linked in: ip6table_mangle ip6table_natip6table_filter ip6_tables iptable_mangle xt_conntrack xt_MASQUERADE nf_conntrack_netlink nfnetlink xt_addrtype iptable_nat nf_nat br_netfilter rpcsec_gss_krb5 auth_rpcgss oid_registry overlay rpcrdma rdma_ucm ib_iser libiscsi scsi_transport_iscsi rdma_cm iw_cm ib_umad ib_ipoib ib_cm mlx5_ib ib_uverbs ib_core fuse mlx5_core
CPU: 15 UID: 0 PID: 1506 Comm: ibv_rc_pingpong Not tainted 6.12.0-rc7+ #1626
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014
RIP: 0010:mlx5r_umr_post_send_wait+0x15a/0x2b0 [mlx5_ib]
[..]
Call Trace:
<TASK>
mlx5r_umr_update_xlt+0x23c/0x3e0 [mlx5_ib]
mlx5_ib_invalidate_range+0x2e1/0x330 [mlx5_ib]
__mmu_notifier_invalidate_range_start+0x1e1/0x240
zap_page_range_single+0xf1/0x1a0
madvise_vma_behavior+0x677/0x6e0
do_madvise+0x1a2/0x4b0
__x64_sys_madvise+0x25/0x30
do_syscall_64+0x6b/0x140
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| In the Linux kernel, the following vulnerability has been resolved:
nvkm/gsp: correctly advance the read pointer of GSP message queue
A GSP event message consists three parts: message header, RPC header,
message body. GSP calculates the number of pages to write from the
total size of a GSP message. This behavior can be observed from the
movement of the write pointer.
However, nvkm takes only the size of RPC header and message body as
the message size when advancing the read pointer. When handling a
two-page GSP message in the non rollback case, It wrongly takes the
message body of the previous message as the message header of the next
message. As the "message length" tends to be zero, in the calculation of
size needs to be copied (0 - size of (message header)), the size needs to
be copied will be "0xffffffxx". It also triggers a kernel panic due to a
NULL pointer error.
[ 547.614102] msg: 00000f90: ff ff ff ff ff ff ff ff 40 d7 18 fb 8b 00 00 00 ........@.......
[ 547.622533] msg: 00000fa0: 00 00 00 00 ff ff ff ff ff ff ff ff 00 00 00 00 ................
[ 547.630965] msg: 00000fb0: ff ff ff ff ff ff ff ff 00 00 00 00 ff ff ff ff ................
[ 547.639397] msg: 00000fc0: ff ff ff ff 00 00 00 00 ff ff ff ff ff ff ff ff ................
[ 547.647832] nvkm 0000:c1:00.0: gsp: peek msg rpc fn:0 len:0x0/0xffffffffffffffe0
[ 547.655225] nvkm 0000:c1:00.0: gsp: get msg rpc fn:0 len:0x0/0xffffffffffffffe0
[ 547.662532] BUG: kernel NULL pointer dereference, address: 0000000000000020
[ 547.669485] #PF: supervisor read access in kernel mode
[ 547.674624] #PF: error_code(0x0000) - not-present page
[ 547.679755] PGD 0 P4D 0
[ 547.682294] Oops: 0000 [#1] PREEMPT SMP NOPTI
[ 547.686643] CPU: 22 PID: 322 Comm: kworker/22:1 Tainted: G E 6.9.0-rc6+ #1
[ 547.694893] Hardware name: ASRockRack 1U1G-MILAN/N/ROMED8-NL, BIOS L3.12E 09/06/2022
[ 547.702626] Workqueue: events r535_gsp_msgq_work [nvkm]
[ 547.707921] RIP: 0010:r535_gsp_msg_recv+0x87/0x230 [nvkm]
[ 547.713375] Code: 00 8b 70 08 48 89 e1 31 d2 4c 89 f7 e8 12 f5 ff ff 48 89 c5 48 85 c0 0f 84 cf 00 00 00 48 81 fd 00 f0 ff ff 0f 87 c4 00 00 00 <8b> 55 10 41 8b 46 30 85 d2 0f 85 f6 00 00 00 83 f8 04 76 10 ba 05
[ 547.732119] RSP: 0018:ffffabe440f87e10 EFLAGS: 00010203
[ 547.737335] RAX: 0000000000000010 RBX: 0000000000000008 RCX: 000000000000003f
[ 547.744461] RDX: 0000000000000000 RSI: ffffabe4480a8030 RDI: 0000000000000010
[ 547.751585] RBP: 0000000000000010 R08: 0000000000000000 R09: ffffabe440f87bb0
[ 547.758707] R10: ffffabe440f87dc8 R11: 0000000000000010 R12: 0000000000000000
[ 547.765834] R13: 0000000000000000 R14: ffff9351df1e5000 R15: 0000000000000000
[ 547.772958] FS: 0000000000000000(0000) GS:ffff93708eb00000(0000) knlGS:0000000000000000
[ 547.781035] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 547.786771] CR2: 0000000000000020 CR3: 00000003cc220002 CR4: 0000000000770ef0
[ 547.793896] PKRU: 55555554
[ 547.796600] Call Trace:
[ 547.799046] <TASK>
[ 547.801152] ? __die+0x20/0x70
[ 547.804211] ? page_fault_oops+0x75/0x170
[ 547.808221] ? print_hex_dump+0x100/0x160
[ 547.812226] ? exc_page_fault+0x64/0x150
[ 547.816152] ? asm_exc_page_fault+0x22/0x30
[ 547.820341] ? r535_gsp_msg_recv+0x87/0x230 [nvkm]
[ 547.825184] r535_gsp_msgq_work+0x42/0x50 [nvkm]
[ 547.829845] process_one_work+0x196/0x3d0
[ 547.833861] worker_thread+0x2fc/0x410
[ 547.837613] ? __pfx_worker_thread+0x10/0x10
[ 547.841885] kthread+0xdf/0x110
[ 547.845031] ? __pfx_kthread+0x10/0x10
[ 547.848775] ret_from_fork+0x30/0x50
[ 547.852354] ? __pfx_kthread+0x10/0x10
[ 547.856097] ret_from_fork_asm+0x1a/0x30
[ 547.860019] </TASK>
[ 547.862208] Modules linked in: nvkm(E) gsp_log(E) snd_seq_dummy(E) snd_hrtimer(E) snd_seq(E) snd_timer(E) snd_seq_device(E) snd(E) soundcore(E) rfkill(E) qrtr(E) vfat(E) fat(E) ipmi_ssif(E) amd_atl(E) intel_rapl_msr(E) intel_rapl_common(E) amd64_edac(E) mlx5_ib(E) edac_mce_amd(E) kvm_amd
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: bail out when failed to load fw in psp_init_cap_microcode()
In function psp_init_cap_microcode(), it should bail out when failed to
load firmware, otherwise it may cause invalid memory access. |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Do not allow mmap() of persistent ring buffer
When trying to mmap a trace instance buffer that is attached to
reserve_mem, it would crash:
BUG: unable to handle page fault for address: ffffe97bd00025c8
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 2862f3067 P4D 2862f3067 PUD 0
Oops: Oops: 0000 [#1] PREEMPT_RT SMP PTI
CPU: 4 UID: 0 PID: 981 Comm: mmap-rb Not tainted 6.14.0-rc2-test-00003-g7f1a5e3fbf9e-dirty #233
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
RIP: 0010:validate_page_before_insert+0x5/0xb0
Code: e2 01 89 d0 c3 cc cc cc cc 66 66 2e 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 0f 1f 44 00 00 <48> 8b 46 08 a8 01 75 67 66 90 48 89 f0 8b 50 34 85 d2 74 76 48 89
RSP: 0018:ffffb148c2f3f968 EFLAGS: 00010246
RAX: ffff9fa5d3322000 RBX: ffff9fa5ccff9c08 RCX: 00000000b879ed29
RDX: ffffe97bd00025c0 RSI: ffffe97bd00025c0 RDI: ffff9fa5ccff9c08
RBP: ffffb148c2f3f9f0 R08: 0000000000000004 R09: 0000000000000004
R10: 0000000000000000 R11: 0000000000000200 R12: 0000000000000000
R13: 00007f16a18d5000 R14: ffff9fa5c48db6a8 R15: 0000000000000000
FS: 00007f16a1b54740(0000) GS:ffff9fa73df00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: ffffe97bd00025c8 CR3: 00000001048c6006 CR4: 0000000000172ef0
Call Trace:
<TASK>
? __die_body.cold+0x19/0x1f
? __die+0x2e/0x40
? page_fault_oops+0x157/0x2b0
? search_module_extables+0x53/0x80
? validate_page_before_insert+0x5/0xb0
? kernelmode_fixup_or_oops.isra.0+0x5f/0x70
? __bad_area_nosemaphore+0x16e/0x1b0
? bad_area_nosemaphore+0x16/0x20
? do_kern_addr_fault+0x77/0x90
? exc_page_fault+0x22b/0x230
? asm_exc_page_fault+0x2b/0x30
? validate_page_before_insert+0x5/0xb0
? vm_insert_pages+0x151/0x400
__rb_map_vma+0x21f/0x3f0
ring_buffer_map+0x21b/0x2f0
tracing_buffers_mmap+0x70/0xd0
__mmap_region+0x6f0/0xbd0
mmap_region+0x7f/0x130
do_mmap+0x475/0x610
vm_mmap_pgoff+0xf2/0x1d0
ksys_mmap_pgoff+0x166/0x200
__x64_sys_mmap+0x37/0x50
x64_sys_call+0x1670/0x1d70
do_syscall_64+0xbb/0x1d0
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The reason was that the code that maps the ring buffer pages to user space
has:
page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
And uses that in:
vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
But virt_to_page() does not work with vmap()'d memory which is what the
persistent ring buffer has. It is rather trivial to allow this, but for
now just disable mmap() of instances that have their ring buffer from the
reserve_mem option.
If an mmap() is performed on a persistent buffer it will return -ENODEV
just like it would if the .mmap field wasn't defined in the
file_operations structure. |
| In the Linux kernel, the following vulnerability has been resolved:
ring-buffer: Validate the persistent meta data subbuf array
The meta data for a mapped ring buffer contains an array of indexes of all
the subbuffers. The first entry is the reader page, and the rest of the
entries lay out the order of the subbuffers in how the ring buffer link
list is to be created.
The validator currently makes sure that all the entries are within the
range of 0 and nr_subbufs. But it does not check if there are any
duplicates.
While working on the ring buffer, I corrupted this array, where I added
duplicates. The validator did not catch it and created the ring buffer
link list on top of it. Luckily, the corruption was only that the reader
page was also in the writer path and only presented corrupted data but did
not crash the kernel. But if there were duplicates in the writer side,
then it could corrupt the ring buffer link list and cause a crash.
Create a bitmask array with the size of the number of subbuffers. Then
clear it. When walking through the subbuf array checking to see if the
entries are within the range, test if its bit is already set in the
subbuf_mask. If it is, then there is duplicates and fail the validation.
If not, set the corresponding bit and continue. |
| In the Linux kernel, the following vulnerability has been resolved:
sched_ext: Fix incorrect autogroup migration detection
scx_move_task() is called from sched_move_task() and tells the BPF scheduler
that cgroup migration is being committed. sched_move_task() is used by both
cgroup and autogroup migrations and scx_move_task() tried to filter out
autogroup migrations by testing the destination cgroup and PF_EXITING but
this is not enough. In fact, without explicitly tagging the thread which is
doing the cgroup migration, there is no good way to tell apart
scx_move_task() invocations for racing migration to the root cgroup and an
autogroup migration.
This led to scx_move_task() incorrectly ignoring a migration from non-root
cgroup to an autogroup of the root cgroup triggering the following warning:
WARNING: CPU: 7 PID: 1 at kernel/sched/ext.c:3725 scx_cgroup_can_attach+0x196/0x340
...
Call Trace:
<TASK>
cgroup_migrate_execute+0x5b1/0x700
cgroup_attach_task+0x296/0x400
__cgroup_procs_write+0x128/0x140
cgroup_procs_write+0x17/0x30
kernfs_fop_write_iter+0x141/0x1f0
vfs_write+0x31d/0x4a0
__x64_sys_write+0x72/0xf0
do_syscall_64+0x82/0x160
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Fix it by adding an argument to sched_move_task() that indicates whether the
moving is for a cgroup or autogroup migration. After the change,
scx_move_task() is called only for cgroup migrations and renamed to
scx_cgroup_move_task(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: ipv6: fix dst ref loops in rpl, seg6 and ioam6 lwtunnels
Some lwtunnels have a dst cache for post-transformation dst.
If the packet destination did not change we may end up recording
a reference to the lwtunnel in its own cache, and the lwtunnel
state will never be freed.
Discovered by the ioam6.sh test, kmemleak was recently fixed
to catch per-cpu memory leaks. I'm not sure if rpl and seg6
can actually hit this, but in principle I don't see why not. |
| Opencast is free and open source software for automated video capture and distribution. First noticed in Opencast 13 and 14, Opencast's Elasticsearch integration may generate syntactically invalid Elasticsearch queries in relation to previously acceptable search queries. From Opencast version 11.4 and newer, Elasticsearch queries are retried a configurable number of times in the case of error to handle temporary losses of connection to Elasticsearch. These invalid queries would fail, causing the retry mechanism to begin requerying with the same syntactically invalid query immediately, in an infinite loop. This causes a massive increase in log size which can in some cases cause a denial of service due to disk exhaustion.
Opencast 13.10 and Opencast 14.3 contain patches which address the base issue, with Opencast 16.7 containing changes which harmonize the search behaviour between the admin UI and external API. Users are strongly recommended to upgrade as soon as possible if running versions prior to 13.10 or 14.3. While the relevant endpoints require (by default) `ROLE_ADMIN` or `ROLE_API_SERIES_VIEW`, the problem queries are otherwise innocuous. This issue could be easily triggered by normal administrative work on an affected Opencast system. Those who run a version newer than 13.10 and 14.3 and see different results when searching in their admin UI vs your external API or LMS, may resolve the issue by upgrading to 16.7. No known workarounds for the vulnerability are available. |
| A post-authentication command injection vulnerability in Zyxel ATP series firmware versions from V4.32 through V5.40, USG FLEX series firmware versions from V4.50 through V5.40, USG FLEX 50(W) series firmware versions from V4.16 through V5.40, and USG20(W)-VPN series firmware versions from V4.16 through V5.40 could allow an authenticated attacker with administrator privileges to execute operating system (OS) commands on the affected device by passing a crafted string as an argument to a CLI command. |
| In Samsung Mobile Processor and Wearable Processor Exynos 980, 850, 1280, 1330, 1380, 1480, 1580, W920, W930, and W1000, there is an improper access control vulnerability related to a log file. |
| An issue was discovered in L2 in Samsung Mobile Processor, Wearable Processor, and Modem Exynos 980, 990, 850, 1080, 2100, 1280, 2200, 1330, 1380, 1480, 9110, W920, W930, Modem 5123, and Modem 5300. Incorrect handling of RLC AM PDUs leads to a Denial of Service. |
| A missing authorization vulnerability in Zyxel ATP series firmware versions from V4.32 through V5.40, USG FLEX series firmware versions from V4.50 through V5.40, USG FLEX 50(W) series firmware versions from V4.16 through V5.40, and USG20(W)-VPN series firmware versions from V4.16 through V5.40 could allow a semi-authenticated attacker—who has completed only the first stage of the two-factor authentication (2FA) process—to view and download the system configuration from an affected device. |
| OpenTelemetry-Go Contrib is a collection of third-party packages for OpenTelemetry-Go. Starting in version 0.37.0 and prior to version 0.46.0, the grpc Unary Server Interceptor out of the box adds labels `net.peer.sock.addr` and `net.peer.sock.port` that have unbound cardinality. It leads to the server's potential memory exhaustion when many malicious requests are sent. An attacker can easily flood the peer address and port for requests. Version 0.46.0 contains a fix for this issue. As a workaround to stop being affected, a view removing the attributes can be used. The other possibility is to disable grpc metrics instrumentation by passing `otelgrpc.WithMeterProvider` option with `noop.NewMeterProvider`. |
| In the Linux kernel, the following vulnerability has been resolved:
bcachefs: bch2_ioctl_subvolume_destroy() fixes
bch2_evict_subvolume_inodes() was getting stuck - due to incorrectly
pruning the dcache.
Also, fix missing permissions checks. |
| Vulnerability in the Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition product of Oracle Java SE (component: Libraries). Supported versions that are affected are Oracle Java SE: 21.0.8 and 25; Oracle GraalVM for JDK: 21.0.8; Oracle GraalVM Enterprise Edition: 21.3.15. Difficult to exploit vulnerability allows unauthenticated attacker with network access via multiple protocols to compromise Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition. Successful attacks of this vulnerability can result in unauthorized update, insert or delete access to some of Oracle Java SE, Oracle GraalVM for JDK, Oracle GraalVM Enterprise Edition accessible data. Note: This vulnerability can be exploited by using APIs in the specified Component, e.g., through a web service which supplies data to the APIs. This vulnerability also applies to Java deployments, typically in clients running sandboxed Java Web Start applications or sandboxed Java applets, that load and run untrusted code (e.g., code that comes from the internet) and rely on the Java sandbox for security. CVSS 3.1 Base Score 3.7 (Integrity impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N). |
| In the Linux kernel, the following vulnerability has been resolved:
nfsd: fix legacy client tracking initialization
Get rid of the nfsd4_legacy_tracking_ops->init() call in
check_for_legacy_methods(). That will be handled in the caller
(nfsd4_client_tracking_init()). Otherwise, we'll wind up calling
nfsd4_legacy_tracking_ops->init() twice, and the second time we'll
trigger the BUG_ON() in nfsd4_init_recdir(). |
| In the Linux kernel, the following vulnerability has been resolved:
mm: zswap: fix crypto_free_acomp() deadlock in zswap_cpu_comp_dead()
Currently, zswap_cpu_comp_dead() calls crypto_free_acomp() while holding
the per-CPU acomp_ctx mutex. crypto_free_acomp() then holds scomp_lock
(through crypto_exit_scomp_ops_async()).
On the other hand, crypto_alloc_acomp_node() holds the scomp_lock (through
crypto_scomp_init_tfm()), and then allocates memory. If the allocation
results in reclaim, we may attempt to hold the per-CPU acomp_ctx mutex.
The above dependencies can cause an ABBA deadlock. For example in the
following scenario:
(1) Task A running on CPU #1:
crypto_alloc_acomp_node()
Holds scomp_lock
Enters reclaim
Reads per_cpu_ptr(pool->acomp_ctx, 1)
(2) Task A is descheduled
(3) CPU #1 goes offline
zswap_cpu_comp_dead(CPU #1)
Holds per_cpu_ptr(pool->acomp_ctx, 1))
Calls crypto_free_acomp()
Waits for scomp_lock
(4) Task A running on CPU #2:
Waits for per_cpu_ptr(pool->acomp_ctx, 1) // Read on CPU #1
DEADLOCK
Since there is no requirement to call crypto_free_acomp() with the per-CPU
acomp_ctx mutex held in zswap_cpu_comp_dead(), move it after the mutex is
unlocked. Also move the acomp_request_free() and kfree() calls for
consistency and to avoid any potential sublte locking dependencies in the
future.
With this, only setting acomp_ctx fields to NULL occurs with the mutex
held. This is similar to how zswap_cpu_comp_prepare() only initializes
acomp_ctx fields with the mutex held, after performing all allocations
before holding the mutex.
Opportunistically, move the NULL check on acomp_ctx so that it takes place
before the mutex dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
media: vimc: skip .s_stream() for stopped entities
Syzbot reported [1] a warning prompted by a check in call_s_stream()
that checks whether .s_stream() operation is warranted for unstarted
or stopped subdevs.
Add a simple fix in vimc_streamer_pipeline_terminate() ensuring that
entities skip a call to .s_stream() unless they have been previously
properly started.
[1] Syzbot report:
------------[ cut here ]------------
WARNING: CPU: 0 PID: 5933 at drivers/media/v4l2-core/v4l2-subdev.c:460 call_s_stream+0x2df/0x350 drivers/media/v4l2-core/v4l2-subdev.c:460
Modules linked in:
CPU: 0 UID: 0 PID: 5933 Comm: syz-executor330 Not tainted 6.13.0-rc2-syzkaller-00362-g2d8308bf5b67 #0
...
Call Trace:
<TASK>
vimc_streamer_pipeline_terminate+0x218/0x320 drivers/media/test-drivers/vimc/vimc-streamer.c:62
vimc_streamer_pipeline_init drivers/media/test-drivers/vimc/vimc-streamer.c:101 [inline]
vimc_streamer_s_stream+0x650/0x9a0 drivers/media/test-drivers/vimc/vimc-streamer.c:203
vimc_capture_start_streaming+0xa1/0x130 drivers/media/test-drivers/vimc/vimc-capture.c:256
vb2_start_streaming+0x15f/0x5a0 drivers/media/common/videobuf2/videobuf2-core.c:1789
vb2_core_streamon+0x2a7/0x450 drivers/media/common/videobuf2/videobuf2-core.c:2348
vb2_streamon drivers/media/common/videobuf2/videobuf2-v4l2.c:875 [inline]
vb2_ioctl_streamon+0xf4/0x170 drivers/media/common/videobuf2/videobuf2-v4l2.c:1118
__video_do_ioctl+0xaf0/0xf00 drivers/media/v4l2-core/v4l2-ioctl.c:3122
video_usercopy+0x4d2/0x1620 drivers/media/v4l2-core/v4l2-ioctl.c:3463
v4l2_ioctl+0x1ba/0x250 drivers/media/v4l2-core/v4l2-dev.c:366
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:906 [inline]
__se_sys_ioctl fs/ioctl.c:892 [inline]
__x64_sys_ioctl+0x190/0x200 fs/ioctl.c:892
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f2b85c01b19
... |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath11k: add srng->lock for ath11k_hal_srng_* in monitor mode
ath11k_hal_srng_* should be used with srng->lock to protect srng data.
For ath11k_dp_rx_mon_dest_process() and ath11k_dp_full_mon_process_rx(),
they use ath11k_hal_srng_* for many times but never call srng->lock.
So when running (full) monitor mode, warning will occur:
RIP: 0010:ath11k_hal_srng_dst_peek+0x18/0x30 [ath11k]
Call Trace:
? ath11k_hal_srng_dst_peek+0x18/0x30 [ath11k]
ath11k_dp_rx_process_mon_status+0xc45/0x1190 [ath11k]
? idr_alloc_u32+0x97/0xd0
ath11k_dp_rx_process_mon_rings+0x32a/0x550 [ath11k]
ath11k_dp_service_srng+0x289/0x5a0 [ath11k]
ath11k_pcic_ext_grp_napi_poll+0x30/0xd0 [ath11k]
__napi_poll+0x30/0x1f0
net_rx_action+0x198/0x320
__do_softirq+0xdd/0x319
So add srng->lock for them to avoid such warnings.
Inorder to fetch the srng->lock, should change srng's definition from
'void' to 'struct hal_srng'. And initialize them elsewhere to prevent
one line of code from being too long. This is consistent with other ring
process functions, such as ath11k_dp_process_rx().
Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03125-QCAHSPSWPL_V1_V2_SILICONZ_LITE-3.6510.30
Tested-on: QCN9074 hw1.0 PCI WLAN.HK.2.7.0.1-01744-QCAHKSWPL_SILICONZ-1 |