| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_sock: Prevent race in socket write iter and sock bind
There is a potential race condition between sock bind and socket write
iter. bind may free the same cmd via mgmt_pending before write iter sends
the cmd, just as syzbot reported in UAF[1].
Here we use hci_dev_lock to synchronize the two, thereby avoiding the
UAF mentioned in [1].
[1]
syzbot reported:
BUG: KASAN: slab-use-after-free in mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316
Read of size 8 at addr ffff888077164818 by task syz.0.17/5989
Call Trace:
mgmt_pending_remove+0x3b/0x210 net/bluetooth/mgmt_util.c:316
set_link_security+0x5c2/0x710 net/bluetooth/mgmt.c:1918
hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg+0x21c/0x270 net/socket.c:742
sock_write_iter+0x279/0x360 net/socket.c:1195
Allocated by task 5989:
mgmt_pending_add+0x35/0x140 net/bluetooth/mgmt_util.c:296
set_link_security+0x557/0x710 net/bluetooth/mgmt.c:1910
hci_mgmt_cmd+0x9c9/0xef0 net/bluetooth/hci_sock.c:1719
hci_sock_sendmsg+0x6ca/0xef0 net/bluetooth/hci_sock.c:1839
sock_sendmsg_nosec net/socket.c:727 [inline]
__sock_sendmsg+0x21c/0x270 net/socket.c:742
sock_write_iter+0x279/0x360 net/socket.c:1195
Freed by task 5991:
mgmt_pending_free net/bluetooth/mgmt_util.c:311 [inline]
mgmt_pending_foreach+0x30d/0x380 net/bluetooth/mgmt_util.c:257
mgmt_index_removed+0x112/0x2f0 net/bluetooth/mgmt.c:9477
hci_sock_bind+0xbe9/0x1000 net/bluetooth/hci_sock.c:1314 |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btusb: mediatek: Fix kernel crash when releasing mtk iso interface
When performing reset tests and encountering abnormal card drop issues
that lead to a kernel crash, it is necessary to perform a null check
before releasing resources to avoid attempting to release a null pointer.
<4>[ 29.158070] Hardware name: Google Quigon sku196612/196613 board (DT)
<4>[ 29.158076] Workqueue: hci0 hci_cmd_sync_work [bluetooth]
<4>[ 29.158154] pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
<4>[ 29.158162] pc : klist_remove+0x90/0x158
<4>[ 29.158174] lr : klist_remove+0x88/0x158
<4>[ 29.158180] sp : ffffffc0846b3c00
<4>[ 29.158185] pmr_save: 000000e0
<4>[ 29.158188] x29: ffffffc0846b3c30 x28: ffffff80cd31f880 x27: ffffff80c1bdc058
<4>[ 29.158199] x26: dead000000000100 x25: ffffffdbdc624ea3 x24: ffffff80c1bdc4c0
<4>[ 29.158209] x23: ffffffdbdc62a3e6 x22: ffffff80c6c07000 x21: ffffffdbdc829290
<4>[ 29.158219] x20: 0000000000000000 x19: ffffff80cd3e0648 x18: 000000031ec97781
<4>[ 29.158229] x17: ffffff80c1bdc4a8 x16: ffffffdc10576548 x15: ffffff80c1180428
<4>[ 29.158238] x14: 0000000000000000 x13: 000000000000e380 x12: 0000000000000018
<4>[ 29.158248] x11: ffffff80c2a7fd10 x10: 0000000000000000 x9 : 0000000100000000
<4>[ 29.158257] x8 : 0000000000000000 x7 : 7f7f7f7f7f7f7f7f x6 : 2d7223ff6364626d
<4>[ 29.158266] x5 : 0000008000000000 x4 : 0000000000000020 x3 : 2e7325006465636e
<4>[ 29.158275] x2 : ffffffdc11afeff8 x1 : 0000000000000000 x0 : ffffffdc11be4d0c
<4>[ 29.158285] Call trace:
<4>[ 29.158290] klist_remove+0x90/0x158
<4>[ 29.158298] device_release_driver_internal+0x20c/0x268
<4>[ 29.158308] device_release_driver+0x1c/0x30
<4>[ 29.158316] usb_driver_release_interface+0x70/0x88
<4>[ 29.158325] btusb_mtk_release_iso_intf+0x68/0xd8 [btusb (HASH:e8b6 5)]
<4>[ 29.158347] btusb_mtk_reset+0x5c/0x480 [btusb (HASH:e8b6 5)]
<4>[ 29.158361] hci_cmd_sync_work+0x10c/0x188 [bluetooth (HASH:a4fa 6)]
<4>[ 29.158430] process_scheduled_works+0x258/0x4e8
<4>[ 29.158441] worker_thread+0x300/0x428
<4>[ 29.158448] kthread+0x108/0x1d0
<4>[ 29.158455] ret_from_fork+0x10/0x20
<0>[ 29.158467] Code: 91343000 940139d1 f9400268 927ff914 (f9401297)
<4>[ 29.158474] ---[ end trace 0000000000000000 ]---
<0>[ 29.167129] Kernel panic - not syncing: Oops: Fatal exception
<2>[ 29.167144] SMP: stopping secondary CPUs
<4>[ 29.167158] ------------[ cut here ]------------ |
| In the Linux kernel, the following vulnerability has been resolved:
can: gs_usb: gs_usb_xmit_callback(): fix handling of failed transmitted URBs
The driver lacks the cleanup of failed transfers of URBs. This reduces the
number of available URBs per error by 1. This leads to reduced performance
and ultimately to a complete stop of the transmission.
If the sending of a bulk URB fails do proper cleanup:
- increase netdev stats
- mark the echo_sbk as free
- free the driver's context and do accounting
- wake the send queue |
| In the Linux kernel, the following vulnerability has been resolved:
can: kvaser_usb: leaf: Fix potential infinite loop in command parsers
The `kvaser_usb_leaf_wait_cmd()` and `kvaser_usb_leaf_read_bulk_callback`
functions contain logic to zero-length commands. These commands are used
to align data to the USB endpoint's wMaxPacketSize boundary.
The driver attempts to skip these placeholders by aligning the buffer
position `pos` to the next packet boundary using `round_up()` function.
However, if zero-length command is found exactly on a packet boundary
(i.e., `pos` is a multiple of wMaxPacketSize, including 0), `round_up`
function will return the unchanged value of `pos`. This prevents `pos`
to be increased, causing an infinite loop in the parsing logic.
This patch fixes this in the function by using `pos + 1` instead.
This ensures that even if `pos` is on a boundary, the calculation is
based on `pos + 1`, forcing `round_up()` to always return the next
aligned boundary. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI/AER: Fix NULL pointer access by aer_info
The kzalloc(GFP_KERNEL) may return NULL, so all accesses to aer_info->xxx
will result in kernel panic. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/zctx: check chained notif contexts
Send zc only links ubuf_info for requests coming from the same context.
There are some ambiguous syz reports, so let's check the assumption on
notification completion. |
| In the Linux kernel, the following vulnerability has been resolved:
clk: thead: th1520-ap: set all AXI clocks to CLK_IS_CRITICAL
The AXI crossbar of TH1520 has no proper timeout handling, which means
gating AXI clocks can easily lead to bus timeout and thus system hang.
Set all AXI clock gates to CLK_IS_CRITICAL. All these clock gates are
ungated by default on system reset.
In addition, convert all current CLK_IGNORE_UNUSED usage to
CLK_IS_CRITICAL to prevent unwanted clock gating. |
| In the Linux kernel, the following vulnerability has been resolved:
page_pool: always add GFP_NOWARN for ATOMIC allocations
Driver authors often forget to add GFP_NOWARN for page allocation
from the datapath. This is annoying to users as OOMs are a fact
of life, and we pretty much expect network Rx to hit page allocation
failures during OOM. Make page pool add GFP_NOWARN for ATOMIC allocations
by default. |
| In the Linux kernel, the following vulnerability has been resolved:
netconsole: Acquire su_mutex before navigating configs hierarchy
There is a race between operations that iterate over the userdata
cg_children list and concurrent add/remove of userdata items through
configfs. The update_userdata() function iterates over the
nt->userdata_group.cg_children list, and count_extradata_entries() also
iterates over this same list to count nodes.
Quoting from Documentation/filesystems/configfs.rst:
> A subsystem can navigate the cg_children list and the ci_parent pointer
> to see the tree created by the subsystem. This can race with configfs'
> management of the hierarchy, so configfs uses the subsystem mutex to
> protect modifications. Whenever a subsystem wants to navigate the
> hierarchy, it must do so under the protection of the subsystem
> mutex.
Without proper locking, if a userdata item is added or removed
concurrently while these functions are iterating, the list can be
accessed in an inconsistent state. For example, the list_for_each() loop
can reach a node that is being removed from the list by list_del_init()
which sets the nodes' .next pointer to point to itself, so the loop will
never end (or reach the WARN_ON_ONCE in update_userdata() ).
Fix this by holding the configfs subsystem mutex (su_mutex) during all
operations that iterate over cg_children.
This includes:
- userdatum_value_store() which calls update_userdata() to iterate over
cg_children
- All sysdata_*_enabled_store() functions which call
count_extradata_entries() to iterate over cg_children
The su_mutex must be acquired before dynamic_netconsole_mutex to avoid
potential lock ordering issues, as configfs operations may already hold
su_mutex when calling into our code. |
| In the Linux kernel, the following vulnerability has been resolved:
lan966x: Fix sleeping in atomic context
The following warning was seen when we try to connect using ssh to the device.
BUG: sleeping function called from invalid context at kernel/locking/mutex.c:575
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 104, name: dropbear
preempt_count: 1, expected: 0
INFO: lockdep is turned off.
CPU: 0 UID: 0 PID: 104 Comm: dropbear Tainted: G W 6.18.0-rc2-00399-g6f1ab1b109b9-dirty #530 NONE
Tainted: [W]=WARN
Hardware name: Generic DT based system
Call trace:
unwind_backtrace from show_stack+0x10/0x14
show_stack from dump_stack_lvl+0x7c/0xac
dump_stack_lvl from __might_resched+0x16c/0x2b0
__might_resched from __mutex_lock+0x64/0xd34
__mutex_lock from mutex_lock_nested+0x1c/0x24
mutex_lock_nested from lan966x_stats_get+0x5c/0x558
lan966x_stats_get from dev_get_stats+0x40/0x43c
dev_get_stats from dev_seq_printf_stats+0x3c/0x184
dev_seq_printf_stats from dev_seq_show+0x10/0x30
dev_seq_show from seq_read_iter+0x350/0x4ec
seq_read_iter from seq_read+0xfc/0x194
seq_read from proc_reg_read+0xac/0x100
proc_reg_read from vfs_read+0xb0/0x2b0
vfs_read from ksys_read+0x6c/0xec
ksys_read from ret_fast_syscall+0x0/0x1c
Exception stack(0xf0b11fa8 to 0xf0b11ff0)
1fa0: 00000001 00001000 00000008 be9048d8 00001000 00000001
1fc0: 00000001 00001000 00000008 00000003 be905920 0000001e 00000000 00000001
1fe0: 0005404c be9048c0 00018684 b6ec2cd8
It seems that we are using a mutex in a atomic context which is wrong.
Change the mutex with a spinlock. |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: Avoid crash due to unaligned access in unwinder
Guenter Roeck reported this kernel crash on his emulated B160L machine:
Starting network: udhcpc: started, v1.36.1
Backtrace:
[<104320d4>] unwind_once+0x1c/0x5c
[<10434a00>] walk_stackframe.isra.0+0x74/0xb8
[<10434a6c>] arch_stack_walk+0x28/0x38
[<104e5efc>] stack_trace_save+0x48/0x5c
[<105d1bdc>] set_track_prepare+0x44/0x6c
[<105d9c80>] ___slab_alloc+0xfc4/0x1024
[<105d9d38>] __slab_alloc.isra.0+0x58/0x90
[<105dc80c>] kmem_cache_alloc_noprof+0x2ac/0x4a0
[<105b8e54>] __anon_vma_prepare+0x60/0x280
[<105a823c>] __vmf_anon_prepare+0x68/0x94
[<105a8b34>] do_wp_page+0x8cc/0xf10
[<105aad88>] handle_mm_fault+0x6c0/0xf08
[<10425568>] do_page_fault+0x110/0x440
[<10427938>] handle_interruption+0x184/0x748
[<11178398>] schedule+0x4c/0x190
BUG: spinlock recursion on CPU#0, ifconfig/2420
lock: terminate_lock.2+0x0/0x1c, .magic: dead4ead, .owner: ifconfig/2420, .owner_cpu: 0
While creating the stack trace, the unwinder uses the stack pointer to guess
the previous frame to read the previous stack pointer from memory. The crash
happens, because the unwinder tries to read from unaligned memory and as such
triggers the unalignment trap handler which then leads to the spinlock
recursion and finally to a deadlock.
Fix it by checking the alignment before accessing the memory. |
| On affected platforms running Arista EOS with OSPFv3 configured, a specially crafted packet can cause the OSFPv3 process to have high CPU utilization which may result in the OSFPv3 process being restarted. This may cause disruption in the OSFPv3 routes on the switch.
This issue was discovered internally by Arista and is not aware of any malicious uses of this issue in customer networks. |
| A vulnerability exists in multiple Radiometer products that allow an attacker with physical access to the analyzer possibility to extract credential information. The vulnerability is due to a weakness in the design and insufficient credential protection in operating system.
Other related CVE's are CVE-2025-14095 & CVE-2025-14097.
Affected customers have been informed about this vulnerability. This CVE is being published to provide transparency.
Required Configuration for Exposure:
Attacker requires physical access to the analyzer.
Temporary work Around:
Only authorized people can physically access the analyzer.
Permanent solution:
Local Radiometer representatives will contact all affected customers to discuss a permanent solution.
Exploit Status:
Researchers have provided a working proof-of-concept (PoC). Radiometer is not aware of any public exploit code at the time of this publication. |
| A vulnerability in the application software of multiple Radiometer products may allow remote code execution and unauthorized device management when specific internal conditions are met. Exploitation requires that a remote connection is established with additional information obtained through other means. The issue is caused by a weakness in the analyzer’s application software. Other related CVE's are CVE-2025-14095 & CVE-2025-14096. Affected customers have been informed about this vulnerability. This CVE is being published to provide transparency.
Required Configuration for Exposure: Affected application software version is in use and remote support feature is enabled in the analyzer. Temporary work Around: If the network is not considered secure, please remove the analyzer from the network. Permanent solution:
Customers should ensure the following:
• The network is secure, and access follows best practices.
Local Radiometer representatives will contact all affected customers to discuss a permanent solution.
Exploit Status:
Researchers have provided working proof-of-concept (PoC). Radiometer is not aware of any publicly available exploits at the time of this publication. |
| Fuji Electric Monitouch V-SFT-6 is vulnerable to an out-of-bounds write
while processing a specially crafted project file, which may allow an
attacker to execute arbitrary code. |
| Mercury D196G d196gv1-cn-up_2020-01-09_11.21.44 is vulnerable to Buffer Overflow in the function sub_404CAEDC via the parameter fac_password. |
| Ampere AmpereOne AC03 devices before 3.5.9.3, AmpereOne AC04 devices before 4.4.5.2, and AmpereOne M devices before 5.4.5.1 allow an incorrectly formed SMC call to UEFI-MM Boot Error Record Table driver that could result in (1) an out-of-bounds read which leaks Secure-EL0 information to a process running in Non-Secure state or (2) an out-of-bounds write which corrupts Secure or Non-Secure memory, limited to memory mapped to UEFI-MM Secure Partition by the Secure Partition Manager. |
| Ampere AmpereOne AC03 devices before 3.5.9.3, AmpereOne AC04 devices before 4.4.5.2, and AmpereOne M devices before 5.4.5.1 allow an incorrectly formed SMC call to UEFI-MM MMCommunicate service that could result in an out-of-bounds write within the UEFI-MM Secure Partition context. |
| D-Link DAP-1325 firmware version 1.01 contains a broken access control vulnerability that allows unauthenticated attackers to download device configuration settings without authentication. Attackers can exploit the /cgi-bin/ExportSettings.sh endpoint to retrieve sensitive configuration information by directly accessing the export settings script. |
| WebsiteBaker 2.13.3 contains a stored cross-site scripting vulnerability that allows authenticated users to upload malicious SVG files with embedded JavaScript. Attackers can upload crafted SVG files with script tags that execute when the file is viewed, enabling persistent cross-site scripting attacks. |