Search Results (328456 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2025-68772 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: f2fs: fix to avoid updating compression context during writeback Bai, Shuangpeng <sjb7183@psu.edu> reported a bug as below: Oops: divide error: 0000 [#1] SMP KASAN PTI CPU: 0 UID: 0 PID: 11441 Comm: syz.0.46 Not tainted 6.17.0 #1 PREEMPT(full) Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:f2fs_all_cluster_page_ready+0x106/0x550 fs/f2fs/compress.c:857 Call Trace: <TASK> f2fs_write_cache_pages fs/f2fs/data.c:3078 [inline] __f2fs_write_data_pages fs/f2fs/data.c:3290 [inline] f2fs_write_data_pages+0x1c19/0x3600 fs/f2fs/data.c:3317 do_writepages+0x38e/0x640 mm/page-writeback.c:2634 filemap_fdatawrite_wbc mm/filemap.c:386 [inline] __filemap_fdatawrite_range mm/filemap.c:419 [inline] file_write_and_wait_range+0x2ba/0x3e0 mm/filemap.c:794 f2fs_do_sync_file+0x6e6/0x1b00 fs/f2fs/file.c:294 generic_write_sync include/linux/fs.h:3043 [inline] f2fs_file_write_iter+0x76e/0x2700 fs/f2fs/file.c:5259 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x7e9/0xe00 fs/read_write.c:686 ksys_write+0x19d/0x2d0 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xf7/0x470 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f The bug was triggered w/ below race condition: fsync setattr ioctl - f2fs_do_sync_file - file_write_and_wait_range - f2fs_write_cache_pages : inode is non-compressed : cc.cluster_size = F2FS_I(inode)->i_cluster_size = 0 - tag_pages_for_writeback - f2fs_setattr - truncate_setsize - f2fs_truncate - f2fs_fileattr_set - f2fs_setflags_common - set_compress_context : F2FS_I(inode)->i_cluster_size = 4 : set_inode_flag(inode, FI_COMPRESSED_FILE) - f2fs_compressed_file : return true - f2fs_all_cluster_page_ready : "pgidx % cc->cluster_size" trigger dividing 0 issue Let's change as below to fix this issue: - introduce a new atomic type variable .writeback in structure f2fs_inode_info to track the number of threads which calling f2fs_write_cache_pages(). - use .i_sem lock to protect .writeback update. - check .writeback before update compression context in f2fs_setflags_common() to avoid race w/ ->writepages.
CVE-2025-68790 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net/mlx5: Fix double unregister of HCA_PORTS component Clear hca_devcom_comp in device's private data after unregistering it in LAG teardown. Otherwise a slightly lagging second pass through mlx5_unload_one() might try to unregister it again and trip over use-after-free. On s390 almost all PCI level recovery events trigger two passes through mxl5_unload_one() - one through the poll_health() method and one through mlx5_pci_err_detected() as callback from generic PCI error recovery. While testing PCI error recovery paths with more kernel debug features enabled, this issue reproducibly led to kernel panics with the following call chain: Unable to handle kernel pointer dereference in virtual kernel address space Failing address: 6b6b6b6b6b6b6000 TEID: 6b6b6b6b6b6b6803 ESOP-2 FSI Fault in home space mode while using kernel ASCE. AS:00000000705c4007 R3:0000000000000024 Oops: 0038 ilc:3 [#1]SMP CPU: 14 UID: 0 PID: 156 Comm: kmcheck Kdump: loaded Not tainted 6.18.0-20251130.rc7.git0.16131a59cab1.300.fc43.s390x+debug #1 PREEMPT Krnl PSW : 0404e00180000000 0000020fc86aa1dc (__lock_acquire+0x5c/0x15f0) R:0 T:1 IO:0 EX:0 Key:0 M:1 W:0 P:0 AS:3 CC:2 PM:0 RI:0 EA:3 Krnl GPRS: 0000000000000000 0000020f00000001 6b6b6b6b6b6b6c33 0000000000000000 0000000000000000 0000000000000000 0000000000000001 0000000000000000 0000000000000000 0000020fca28b820 0000000000000000 0000010a1ced8100 0000010a1ced8100 0000020fc9775068 0000018fce14f8b8 0000018fce14f7f8 Krnl Code: 0000020fc86aa1cc: e3b003400004 lg %r11,832 0000020fc86aa1d2: a7840211 brc 8,0000020fc86aa5f4 *0000020fc86aa1d6: c09000df0b25 larl %r9,0000020fca28b820 >0000020fc86aa1dc: d50790002000 clc 0(8,%r9),0(%r2) 0000020fc86aa1e2: a7840209 brc 8,0000020fc86aa5f4 0000020fc86aa1e6: c0e001100401 larl %r14,0000020fca8aa9e8 0000020fc86aa1ec: c01000e25a00 larl %r1,0000020fca2f55ec 0000020fc86aa1f2: a7eb00e8 aghi %r14,232 Call Trace: __lock_acquire+0x5c/0x15f0 lock_acquire.part.0+0xf8/0x270 lock_acquire+0xb0/0x1b0 down_write+0x5a/0x250 mlx5_detach_device+0x42/0x110 [mlx5_core] mlx5_unload_one_devl_locked+0x50/0xc0 [mlx5_core] mlx5_unload_one+0x42/0x60 [mlx5_core] mlx5_pci_err_detected+0x94/0x150 [mlx5_core] zpci_event_attempt_error_recovery+0xcc/0x388
CVE-2025-68805 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: fuse: fix io-uring list corruption for terminated non-committed requests When a request is terminated before it has been committed, the request is not removed from the queue's list. This leaves a dangling list entry that leads to list corruption and use-after-free issues. Remove the request from the queue's list for terminated non-committed requests.
CVE-2025-71076 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/xe/oa: Limit num_syncs to prevent oversized allocations The OA open parameters did not validate num_syncs, allowing userspace to pass arbitrarily large values, potentially leading to excessive allocations. Add check to ensure that num_syncs does not exceed DRM_XE_MAX_SYNCS, returning -EINVAL when the limit is violated. v2: use XE_IOCTL_DBG() and drop duplicated check. (Ashutosh) (cherry picked from commit e057b2d2b8d815df3858a87dffafa2af37e5945b)
CVE-2025-11669 1 Zohocorp 3 Manageengine Access Manager Plus, Manageengine Pam360, Manageengine Password Manager Pro 2026-01-14 8.1 High
Zohocorp ManageEngine PAM360 versions before 8202; Password Manager Pro versions before 13221; Access Manager Plus versions prior to 4401 are vulnerable to an authorization issue in the initiate remote session functionality.
CVE-2025-12548 1 Redhat 1 Openshift Devspaces 2026-01-14 9 Critical
A flaw was found in Eclipse Che che-machine-exec. This vulnerability allows unauthenticated remote arbitrary command execution and secret exfiltration (SSH keys, tokens, etc.) from other users' Developer Workspace containers, via an unauthenticated JSON-RPC / websocket API exposed on TCP port 3333.
CVE-2025-13444 1 Progress 2 Loadmaster, Multi-tenant Loadmaster 2026-01-14 8.4 High
OS Command Injection Remote Code Execution Vulnerability in API in Progress LoadMaster allows an authenticated attacker with “User Administration” permissions to execute arbitrary commands on the LoadMaster appliance by exploiting unsanitized input in the API input parameters
CVE-2025-13447 1 Progress 1 Loadmaster 2026-01-14 8.4 High
OS Command Injection Remote Code Execution Vulnerability in API in Progress LoadMaster allows an authenticated attacker with “User Administration” permissions to execute arbitrary commands on the LoadMaster appliance by exploiting unsanitized input in the API input parameters
CVE-2025-36640 2 Microsoft, Tenable 2 Windows, Nessus Agent 2026-01-14 8.8 High
A vulnerability has been identified in the installation/uninstallation of the Nessus Agent Tray App on Windows Hosts which could lead to escalation of privileges.
CVE-2025-68768 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: inet: frags: flush pending skbs in fqdir_pre_exit() We have been seeing occasional deadlocks on pernet_ops_rwsem since September in NIPA. The stuck task was usually modprobe (often loading a driver like ipvlan), trying to take the lock as a Writer. lockdep does not track readers for rwsems so the read wasn't obvious from the reports. On closer inspection the Reader holding the lock was conntrack looping forever in nf_conntrack_cleanup_net_list(). Based on past experience with occasional NIPA crashes I looked thru the tests which run before the crash and noticed that the crash follows ip_defrag.sh. An immediate red flag. Scouring thru (de)fragmentation queues reveals skbs sitting around, holding conntrack references. The problem is that since conntrack depends on nf_defrag_ipv6, nf_defrag_ipv6 will load first. Since nf_defrag_ipv6 loads first its netns exit hooks run _after_ conntrack's netns exit hook. Flush all fragment queue SKBs during fqdir_pre_exit() to release conntrack references before conntrack cleanup runs. Also flush the queues in timer expiry handlers when they discover fqdir->dead is set, in case packet sneaks in while we're running the pre_exit flush. The commit under Fixes is not exactly the culprit, but I think previously the timer firing would eventually unblock the spinning conntrack.
CVE-2025-68770 1 Linux 1 Linux Kernel 2026-01-14 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bnxt_en: Fix XDP_TX path For XDP_TX action in bnxt_rx_xdp(), clearing of the event flags is not correct. __bnxt_poll_work() -> bnxt_rx_pkt() -> bnxt_rx_xdp() may be looping within NAPI and some event flags may be set in earlier iterations. In particular, if BNXT_TX_EVENT is set earlier indicating some XDP_TX packets are ready and pending, it will be cleared if it is XDP_TX action again. Normally, we will set BNXT_TX_EVENT again when we successfully call __bnxt_xmit_xdp(). But if the TX ring has no more room, the flag will not be set. This will cause the TX producer to be ahead but the driver will not hit the TX doorbell. For multi-buf XDP_TX, there is no need to clear the event flags and set BNXT_AGG_EVENT. The BNXT_AGG_EVENT flag should have been set earlier in bnxt_rx_pkt(). The visible symptom of this is that the RX ring associated with the TX XDP ring will eventually become empty and all packets will be dropped. Because this condition will cause the driver to not refill the RX ring seeing that the TX ring has forever pending XDP_TX packets. The fix is to only clear BNXT_RX_EVENT when we have successfully called __bnxt_xmit_xdp().
CVE-2025-68775 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/handshake: duplicate handshake cancellations leak socket When a handshake request is cancelled it is removed from the handshake_net->hn_requests list, but it is still present in the handshake_rhashtbl until it is destroyed. If a second cancellation request arrives for the same handshake request, then remove_pending() will return false... and assuming HANDSHAKE_F_REQ_COMPLETED isn't set in req->hr_flags, we'll continue processing through the out_true label, where we put another reference on the sock and a refcount underflow occurs. This can happen for example if a handshake times out - particularly if the SUNRPC client sends the AUTH_TLS probe to the server but doesn't follow it up with the ClientHello due to a problem with tlshd. When the timeout is hit on the server, the server will send a FIN, which triggers a cancellation request via xs_reset_transport(). When the timeout is hit on the client, another cancellation request happens via xs_tls_handshake_sync(). Add a test_and_set_bit(HANDSHAKE_F_REQ_COMPLETED) in the pending cancel path so duplicate cancels can be detected.
CVE-2025-68781 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: usb: phy: fsl-usb: Fix use-after-free in delayed work during device removal The delayed work item otg_event is initialized in fsl_otg_conf() and scheduled under two conditions: 1. When a host controller binds to the OTG controller. 2. When the USB ID pin state changes (cable insertion/removal). A race condition occurs when the device is removed via fsl_otg_remove(): the fsl_otg instance may be freed while the delayed work is still pending or executing. This leads to use-after-free when the work function fsl_otg_event() accesses the already freed memory. The problematic scenario: (detach thread) | (delayed work) fsl_otg_remove() | kfree(fsl_otg_dev) //FREE| fsl_otg_event() | og = container_of(...) //USE | og-> //USE Fix this by calling disable_delayed_work_sync() in fsl_otg_remove() before deallocating the fsl_otg structure. This ensures the delayed work is properly canceled and completes execution prior to memory deallocation. This bug was identified through static analysis.
CVE-2025-68784 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: xfs: fix a UAF problem in xattr repair The xchk_setup_xattr_buf function can allocate a new value buffer, which means that any reference to ab->value before the call could become a dangling pointer. Fix this by moving an assignment to after the buffer setup.
CVE-2025-68791 1 Linux 1 Linux Kernel 2026-01-14 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fuse: missing copy_finish in fuse-over-io-uring argument copies Fix a possible reference count leak of payload pages during fuse argument copies. [Joanne: simplified error cleanup]
CVE-2025-68793 1 Linux 1 Linux Kernel 2026-01-14 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix a job->pasid access race in gpu recovery Avoid a possible UAF in GPU recovery due to a race between the sched timeout callback and the tdr work queue. The gpu recovery function calls drm_sched_stop() and later drm_sched_start(). drm_sched_start() restarts the tdr queue which will eventually free the job. If the tdr queue frees the job before time out callback completes, the job will be freed and we'll get a UAF when accessing the pasid. Cache it early to avoid the UAF. Example KASAN trace: [ 493.058141] BUG: KASAN: slab-use-after-free in amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.067530] Read of size 4 at addr ffff88b0ce3f794c by task kworker/u128:1/323 [ 493.074892] [ 493.076485] CPU: 9 UID: 0 PID: 323 Comm: kworker/u128:1 Tainted: G E 6.16.0-1289896.2.zuul.bf4f11df81c1410bbe901c4373305a31 #1 PREEMPT(voluntary) [ 493.076493] Tainted: [E]=UNSIGNED_MODULE [ 493.076495] Hardware name: TYAN B8021G88V2HR-2T/S8021GM2NR-2T, BIOS V1.03.B10 04/01/2019 [ 493.076500] Workqueue: amdgpu-reset-dev drm_sched_job_timedout [gpu_sched] [ 493.076512] Call Trace: [ 493.076515] <TASK> [ 493.076518] dump_stack_lvl+0x64/0x80 [ 493.076529] print_report+0xce/0x630 [ 493.076536] ? _raw_spin_lock_irqsave+0x86/0xd0 [ 493.076541] ? __pfx__raw_spin_lock_irqsave+0x10/0x10 [ 493.076545] ? amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.077253] kasan_report+0xb8/0xf0 [ 493.077258] ? amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.077965] amdgpu_device_gpu_recover+0x968/0x990 [amdgpu] [ 493.078672] ? __pfx_amdgpu_device_gpu_recover+0x10/0x10 [amdgpu] [ 493.079378] ? amdgpu_coredump+0x1fd/0x4c0 [amdgpu] [ 493.080111] amdgpu_job_timedout+0x642/0x1400 [amdgpu] [ 493.080903] ? pick_task_fair+0x24e/0x330 [ 493.080910] ? __pfx_amdgpu_job_timedout+0x10/0x10 [amdgpu] [ 493.081702] ? _raw_spin_lock+0x75/0xc0 [ 493.081708] ? __pfx__raw_spin_lock+0x10/0x10 [ 493.081712] drm_sched_job_timedout+0x1b0/0x4b0 [gpu_sched] [ 493.081721] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 493.081725] process_one_work+0x679/0xff0 [ 493.081732] worker_thread+0x6ce/0xfd0 [ 493.081736] ? __pfx_worker_thread+0x10/0x10 [ 493.081739] kthread+0x376/0x730 [ 493.081744] ? __pfx_kthread+0x10/0x10 [ 493.081748] ? __pfx__raw_spin_lock_irq+0x10/0x10 [ 493.081751] ? __pfx_kthread+0x10/0x10 [ 493.081755] ret_from_fork+0x247/0x330 [ 493.081761] ? __pfx_kthread+0x10/0x10 [ 493.081764] ret_from_fork_asm+0x1a/0x30 [ 493.081771] </TASK> (cherry picked from commit 20880a3fd5dd7bca1a079534cf6596bda92e107d)
CVE-2026-22870 1 Datadoghq 1 Guarddog 2026-01-14 N/A
GuardDog is a CLI tool to identify malicious PyPI packages. Prior to 2.7.1, GuardDog's safe_extract() function does not validate decompressed file sizes when extracting ZIP archives (wheels, eggs), allowing attackers to cause denial of service through zip bombs. A malicious package can consume gigabytes of disk space from a few megabytes of compressed data. This vulnerability is fixed in 2.7.1.
CVE-2025-37179 3 Arubanetworks, Hp, Hpe 3 Arubaos, Arubaos, Arubaos 2026-01-14 5.3 Medium
Multiple out-of-bounds read vulnerabilities were identified in a system component responsible for handling certain data buffers. Due to insufficient validation of maximum buffer size values, the process may attempt to read beyond the intended memory region. Under specific conditions, this can result in a crash of the affected process and a potential denial-of-service of the compromised process.
CVE-2025-68271 1 Openc3 1 Cosmos 2026-01-14 10 Critical
OpenC3 COSMOS provides the functionality needed to send commands to and receive data from one or more embedded systems. From 5.0.0 to 6.10.1, OpenC3 COSMOS contains a critical remote code execution vulnerability reachable through the JSON-RPC API. When a JSON-RPC request uses the string form of certain APIs, attacker-controlled parameter text is parsed into values using String#convert_to_value. For array-like inputs, convert_to_value executes eval(). Because the cmd code path parses the command string before calling authorize(), an unauthenticated attacker can trigger Ruby code execution even though the request ultimately fails authorization (401). This vulnerability is fixed in 6.10.2.
CVE-2025-68701 1 Samrocketman 1 Jervis 2026-01-14 N/A
Jervis is a library for Job DSL plugin scripts and shared Jenkins pipeline libraries. Prior to 2.2, Jervis uses deterministic AES IV derivation from a passphrase. This vulnerability is fixed in 2.2.