| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| GLPI is a free asset and IT management software package. In versions starting from 0.71 to before 10.0.23 and before 11.0.5, when remote authentication is used, based on SSO variables, a user can steal a GLPI session previously opened by another user on the same machine. This issue has been patched in versions . |
| IBM Db2 Big SQL on Cloud Pak for Data versions 7.6 (on CP4D 4.8), 7.7 (on CP4D 5.0), and 7.8 (on CP4D 5.1) do not properly limit the allocation of system resources. An authenticated user with internal knowledge of the environment could exploit this weakness to cause a denial of service. |
| Amiti Antivirus 25.0.640 contains an unquoted service path vulnerability in its Windows service configurations. Attackers can exploit the unquoted path to inject and execute malicious code with elevated LocalSystem privileges by placing executable files in specific directory locations. |
| NETGATE Data Backup 3.0.620 contains an unquoted service path vulnerability in its NGDatBckpSrv Windows service configuration. Attackers can exploit the unquoted path to inject and execute malicious code with LocalSystem privileges by placing executable files in specific directory locations. |
| Easy-Hide-IP 5.0.0.3 contains an unquoted service path vulnerability in the EasyRedirect service that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted path in 'C:\Program Files\Easy-Hide-IP\rdr\EasyRedirect.exe' to inject malicious executables and escalate privileges. |
| In the Linux kernel, the following vulnerability has been resolved:
uacce: ensure safe queue release with state management
Directly calling `put_queue` carries risks since it cannot
guarantee that resources of `uacce_queue` have been fully released
beforehand. So adding a `stop_queue` operation for the
UACCE_CMD_PUT_Q command and leaving the `put_queue` operation to
the final resource release ensures safety.
Queue states are defined as follows:
- UACCE_Q_ZOMBIE: Initial state
- UACCE_Q_INIT: After opening `uacce`
- UACCE_Q_STARTED: After `start` is issued via `ioctl`
When executing `poweroff -f` in virt while accelerator are still
working, `uacce_fops_release` and `uacce_remove` may execute
concurrently. This can cause `uacce_put_queue` within
`uacce_fops_release` to access a NULL `ops` pointer. Therefore, add
state checks to prevent accessing freed pointers. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rsi: Fix memory corruption due to not set vif driver data size
The struct ieee80211_vif contains trailing space for vif driver data,
when struct ieee80211_vif is allocated, the total memory size that is
allocated is sizeof(struct ieee80211_vif) + size of vif driver data.
The size of vif driver data is set by each WiFi driver as needed.
The RSI911x driver does not set vif driver data size, no trailing space
for vif driver data is therefore allocated past struct ieee80211_vif .
The RSI911x driver does however use the vif driver data to store its
vif driver data structure "struct vif_priv". An access to vif->drv_priv
leads to access out of struct ieee80211_vif bounds and corruption of
some memory.
In case of the failure observed locally, rsi_mac80211_add_interface()
would write struct vif_priv *vif_info = (struct vif_priv *)vif->drv_priv;
vif_info->vap_id = vap_idx. This write corrupts struct fq_tin member
struct list_head new_flows . The flow = list_first_entry(head, struct
fq_flow, flowchain); in fq_tin_reset() then reports non-NULL bogus
address, which when accessed causes a crash.
The trigger is very simple, boot the machine with init=/bin/sh , mount
devtmpfs, sysfs, procfs, and then do "ip link set wlan0 up", "sleep 1",
"ip link set wlan0 down" and the crash occurs.
Fix this by setting the correct size of vif driver data, which is the
size of "struct vif_priv", so that memory is allocated and the driver
can store its driver data in it, instead of corrupting memory around
it. |
| ProShow Producer 9.0.3797 contains an unquoted service path vulnerability in the ScsiAccess service that allows local attackers to potentially execute arbitrary code. Attackers can exploit the unquoted binary path to inject malicious executables that will be run with LocalSystem privileges during service startup. |
| OpenSTAManager is an open source management software for technical assistance and invoicing. In version 2.9.8 and prior, there is a SQL Injection vulnerability in the Stampe Module. At time of publication, no known patch exists. |
| IBM Common Cryptographic Architecture (CCA) 7.5.52 and 8.4.82 could allow an unauthenticated user to execute arbitrary commands with elevated privileges on the system. |
| IBM Jazz Reporting Service could allow an authenticated user on the host network to cause a denial of service using specially crafted SQL query that consumes excess memory resources. |
| IBM Jazz Reporting Service could allow an authenticated user on the network to affect the system's performance using complicated queries due to insufficient resource pooling. |
| In the Linux kernel, the following vulnerability has been resolved:
i2c: riic: Move suspend handling to NOIRQ phase
Commit 53326135d0e0 ("i2c: riic: Add suspend/resume support") added
suspend support for the Renesas I2C driver and following this change
on RZ/G3E the following WARNING is seen on entering suspend ...
[ 134.275704] Freezing remaining freezable tasks completed (elapsed 0.001 seconds)
[ 134.285536] ------------[ cut here ]------------
[ 134.290298] i2c i2c-2: Transfer while suspended
[ 134.295174] WARNING: drivers/i2c/i2c-core.h:56 at __i2c_smbus_xfer+0x1e4/0x214, CPU#0: systemd-sleep/388
[ 134.365507] Tainted: [W]=WARN
[ 134.368485] Hardware name: Renesas SMARC EVK version 2 based on r9a09g047e57 (DT)
[ 134.375961] pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 134.382935] pc : __i2c_smbus_xfer+0x1e4/0x214
[ 134.387329] lr : __i2c_smbus_xfer+0x1e4/0x214
[ 134.391717] sp : ffff800083f23860
[ 134.395040] x29: ffff800083f23860 x28: 0000000000000000 x27: ffff800082ed5d60
[ 134.402226] x26: 0000001f4395fd74 x25: 0000000000000007 x24: 0000000000000001
[ 134.409408] x23: 0000000000000000 x22: 000000000000006f x21: ffff800083f23936
[ 134.416589] x20: ffff0000c090e140 x19: ffff0000c090e0d0 x18: 0000000000000006
[ 134.423771] x17: 6f63657320313030 x16: 2e30206465737061 x15: ffff800083f23280
[ 134.430953] x14: 0000000000000000 x13: ffff800082b16ce8 x12: 0000000000000f09
[ 134.438134] x11: 0000000000000503 x10: ffff800082b6ece8 x9 : ffff800082b16ce8
[ 134.445315] x8 : 00000000ffffefff x7 : ffff800082b6ece8 x6 : 80000000fffff000
[ 134.452495] x5 : 0000000000000504 x4 : 0000000000000000 x3 : 0000000000000000
[ 134.459672] x2 : 0000000000000000 x1 : 0000000000000000 x0 : ffff0000c9ee9e80
[ 134.466851] Call trace:
[ 134.469311] __i2c_smbus_xfer+0x1e4/0x214 (P)
[ 134.473715] i2c_smbus_xfer+0xbc/0x120
[ 134.477507] i2c_smbus_read_byte_data+0x4c/0x84
[ 134.482077] isl1208_i2c_read_time+0x44/0x178 [rtc_isl1208]
[ 134.487703] isl1208_rtc_read_time+0x14/0x20 [rtc_isl1208]
[ 134.493226] __rtc_read_time+0x44/0x88
[ 134.497012] rtc_read_time+0x3c/0x68
[ 134.500622] rtc_suspend+0x9c/0x170
The warning is triggered because I2C transfers can still be attempted
while the controller is already suspended, due to inappropriate ordering
of the system sleep callbacks.
If the controller is autosuspended, there is no way to wake it up once
runtime PM disabled (in suspend_late()). During system resume, the I2C
controller will be available only after runtime PM is re-enabled
(in resume_early()). However, this may be too late for some devices.
Wake up the controller in the suspend() callback while runtime PM is
still enabled. The I2C controller will remain available until the
suspend_noirq() callback (pm_runtime_force_suspend()) is called. During
resume, the I2C controller can be restored by the resume_noirq() callback
(pm_runtime_force_resume()). Finally, the resume() callback re-enables
autosuspend. As a result, the I2C controller can remain available until
the system enters suspend_noirq() and from resume_noirq(). |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/fpsimd: signal: Fix restoration of SVE context
When SME is supported, Restoring SVE signal context can go wrong in a
few ways, including placing the task into an invalid state where the
kernel may read from out-of-bounds memory (and may potentially take a
fatal fault) and/or may kill the task with a SIGKILL.
(1) Restoring a context with SVE_SIG_FLAG_SM set can place the task into
an invalid state where SVCR.SM is set (and sve_state is non-NULL)
but TIF_SME is clear, consequently resuting in out-of-bounds memory
reads and/or killing the task with SIGKILL.
This can only occur in unusual (but legitimate) cases where the SVE
signal context has either been modified by userspace or was saved in
the context of another task (e.g. as with CRIU), as otherwise the
presence of an SVE signal context with SVE_SIG_FLAG_SM implies that
TIF_SME is already set.
While in this state, task_fpsimd_load() will NOT configure SMCR_ELx
(leaving some arbitrary value configured in hardware) before
restoring SVCR and attempting to restore the streaming mode SVE
registers from memory via sve_load_state(). As the value of
SMCR_ELx.LEN may be larger than the task's streaming SVE vector
length, this may read memory outside of the task's allocated
sve_state, reading unrelated data and/or triggering a fault.
While this can result in secrets being loaded into streaming SVE
registers, these values are never exposed. As TIF_SME is clear,
fpsimd_bind_task_to_cpu() will configure CPACR_ELx.SMEN to trap EL0
accesses to streaming mode SVE registers, so these cannot be
accessed directly at EL0. As fpsimd_save_user_state() verifies the
live vector length before saving (S)SVE state to memory, no secret
values can be saved back to memory (and hence cannot be observed via
ptrace, signals, etc).
When the live vector length doesn't match the expected vector length
for the task, fpsimd_save_user_state() will send a fatal SIGKILL
signal to the task. Hence the task may be killed after executing
userspace for some period of time.
(2) Restoring a context with SVE_SIG_FLAG_SM clear does not clear the
task's SVCR.SM. If SVCR.SM was set prior to restoring the context,
then the task will be left in streaming mode unexpectedly, and some
register state will be combined inconsistently, though the task will
be left in legitimate state from the kernel's PoV.
This can only occur in unusual (but legitimate) cases where ptrace
has been used to set SVCR.SM after entry to the sigreturn syscall,
as syscall entry clears SVCR.SM.
In these cases, the the provided SVE register data will be loaded
into the task's sve_state using the non-streaming SVE vector length
and the FPSIMD registers will be merged into this using the
streaming SVE vector length.
Fix (1) by setting TIF_SME when setting SVCR.SM. This also requires
ensuring that the task's sme_state has been allocated, but as this could
contain live ZA state, it should not be zeroed. Fix (2) by clearing
SVCR.SM when restoring a SVE signal context with SVE_SIG_FLAG_SM clear.
For consistency, I've pulled the manipulation of SVCR, TIF_SVE, TIF_SME,
and fp_type earlier, immediately after the allocation of
sve_state/sme_state, before the restore of the actual register state.
This makes it easier to ensure that these are always modified
consistently, even if a fault is taken while reading the register data
from the signal context. I do not expect any software to depend on the
exact state restored when a fault is taken while reading the context. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: xen: scsiback: Fix potential memory leak in scsiback_remove()
Memory allocated for struct vscsiblk_info in scsiback_probe() is not
freed in scsiback_remove() leading to potential memory leaks on remove,
as well as in the scsiback_probe() error paths. Fix that by freeing it
in scsiback_remove(). |
| In the Linux kernel, the following vulnerability has been resolved:
netrom: fix double-free in nr_route_frame()
In nr_route_frame(), old_skb is immediately freed without checking if
nr_neigh->ax25 pointer is NULL. Therefore, if nr_neigh->ax25 is NULL,
the caller function will free old_skb again, causing a double-free bug.
Therefore, to prevent this, we need to modify it to check whether
nr_neigh->ax25 is NULL before freeing old_skb. |
| ESF-IDF is the Espressif Internet of Things (IOT) Development Framework. In versions 5.5.2, 5.4.3, 5.3.4, 5.2.6, and 5.1.6, a vulnerability exists in the WPS (Wi-Fi Protected Setup) Enrollee implementation where malformed EAP-WSC packets with truncated payloads can cause integer underflow during fragment length calculation. When processing EAP-Expanded (WSC) messages, the code computes frag_len by subtracting header sizes from the total packet length. If an attacker sends a packet where the EAP Length field covers only the header and flags but omits the expected payload (such as the 2-byte Message Length field when WPS_MSG_FLAG_LEN is set), frag_len becomes negative. This negative value is then implicitly cast to size_t when passed to wpabuf_put_data(), resulting in a very large unsigned value. This issue has been patched in versions 5.5.3, 5.4.4, 5.3.5, 5.2.7, and 5.1.7. |
| Wing FTP Server 6.0.7 contains an unquoted service path vulnerability that allows local attackers to potentially execute arbitrary code with elevated system privileges. Attackers can exploit the unquoted binary path in the service configuration to inject malicious executables that will be launched with LocalSystem permissions. |
| TexasSoft CyberPlanet 6.4.131 contains an unquoted service path vulnerability in the CCSrvProxy service that allows local attackers to execute arbitrary code. Attackers can exploit the unquoted path in 'C:\Program Files (x86)\TenaxSoft\CyberPlanet\SrvProxy.exe' to inject malicious executables and gain elevated system privileges. |
| The unstructured library provides open-source components for ingesting and pre-processing images and text documents, such as PDFs, HTML, Word docs, and many more. Prior to version 0.18.18, a path traversal vulnerability in the partition_msg function allows an attacker to write or overwrite arbitrary files on the filesystem when processing malicious MSG files with attachments. This issue has been patched in version 0.18.18. |