Search

Search Results (316050 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2024-39595 1 Sap 2 Business Warehouse, Business Warehouse Virtual Comp 2025-10-28 5.4 Medium
SAP Business Warehouse - Business Planning and Simulation application does not sufficiently encode user-controlled inputs, resulting in Stored Cross-Site Scripting (XSS) vulnerability. This vulnerability allows users to modify website content and on successful exploitation, an attacker can cause low impact to the confidentiality and integrity of the application.
CVE-2024-39599 1 Sap 1 Sap Basis 2025-10-28 4.7 Medium
Due to a Protection Mechanism Failure in SAP NetWeaver Application Server for ABAP and ABAP Platform, a developer can bypass the configured malware scanner API because of a programming error. This leads to a low impact on the application's confidentiality, integrity, and availability.
CVE-2024-45281 1 Sap 2 Business Objects Business Intelligence Platform, Businessobjects Business Intelligence Platform 2025-10-28 5.8 Medium
SAP BusinessObjects Business Intelligence Platform allows a high privilege user to run client desktop applications even if some of the DLLs are not digitally signed or if the signature is broken. The attacker needs to have local access to the vulnerable system to perform DLL related tasks. This could result in a high impact on confidentiality and integrity of the application.
CVE-2025-30712 1 Oracle 1 Vm Virtualbox 2025-10-28 8.1 High
Vulnerability in the Oracle VM VirtualBox product of Oracle Virtualization (component: Core). The supported version that is affected is 7.1.6. Easily exploitable vulnerability allows high privileged attacker with logon to the infrastructure where Oracle VM VirtualBox executes to compromise Oracle VM VirtualBox. While the vulnerability is in Oracle VM VirtualBox, attacks may significantly impact additional products (scope change). Successful attacks of this vulnerability can result in unauthorized creation, deletion or modification access to critical data or all Oracle VM VirtualBox accessible data as well as unauthorized access to critical data or complete access to all Oracle VM VirtualBox accessible data and unauthorized ability to cause a partial denial of service (partial DOS) of Oracle VM VirtualBox. CVSS 3.1 Base Score 8.1 (Confidentiality, Integrity and Availability impacts). CVSS Vector: (CVSS:3.1/AV:L/AC:L/PR:H/UI:N/S:C/C:H/I:H/A:L).
CVE-2024-11481 1 Trellix 1 Enterprise Security Manager 2025-10-28 8.2 High
A vulnerability in ESM 11.6.10 allows unauthenticated access to the internal Snowservice API. This leads to improper handling of path traversal, insecure forwarding to an AJP backend without adequate validation, and lack of authentication for accessing internal API endpoints.
CVE-2024-11482 2 Hp, Trellix 2 Enterprise Security Manager, Enterprise Security Manager 2025-10-28 9.8 Critical
A vulnerability in ESM 11.6.10 allows unauthenticated access to the internal Snowservice API and enables remote code execution through command injection, executed as the root user.
CVE-2023-52929 1 Linux 1 Linux Kernel 2025-10-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: nvmem: core: fix cleanup after dev_set_name() If dev_set_name() fails, we leak nvmem->wp_gpio as the cleanup does not put this. While a minimal fix for this would be to add the gpiod_put() call, we can do better if we split device_register(), and use the tested nvmem_release() cleanup code by initialising the device early, and putting the device. This results in a slightly larger fix, but results in clear code. Note: this patch depends on "nvmem: core: initialise nvmem->id early" and "nvmem: core: remove nvmem_config wp_gpio". [Srini: Fixed subject line and error code handing with wp_gpio while applying.]
CVE-2024-32732 1 Sap 1 Businessobjects Business Intelligence Platform 2025-10-28 5.3 Medium
Under certain conditions SAP BusinessObjects Business Intelligence platform allows an attacker to access information which would otherwise be restricted.This has low impact on Confidentiality with no impact on Integrity and Availability of the application.
CVE-2023-52933 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel E4s 2025-10-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Squashfs: fix handling and sanity checking of xattr_ids count A Sysbot [1] corrupted filesystem exposes two flaws in the handling and sanity checking of the xattr_ids count in the filesystem. Both of these flaws cause computation overflow due to incorrect typing. In the corrupted filesystem the xattr_ids value is 4294967071, which stored in a signed variable becomes the negative number -225. Flaw 1 (64-bit systems only): The signed integer xattr_ids variable causes sign extension. This causes variable overflow in the SQUASHFS_XATTR_*(A) macros. The variable is first multiplied by sizeof(struct squashfs_xattr_id) where the type of the sizeof operator is "unsigned long". On a 64-bit system this is 64-bits in size, and causes the negative number to be sign extended and widened to 64-bits and then become unsigned. This produces the very large number 18446744073709548016 or 2^64 - 3600. This number when rounded up by SQUASHFS_METADATA_SIZE - 1 (8191 bytes) and divided by SQUASHFS_METADATA_SIZE overflows and produces a length of 0 (stored in len). Flaw 2 (32-bit systems only): On a 32-bit system the integer variable is not widened by the unsigned long type of the sizeof operator (32-bits), and the signedness of the variable has no effect due it always being treated as unsigned. The above corrupted xattr_ids value of 4294967071, when multiplied overflows and produces the number 4294963696 or 2^32 - 3400. This number when rounded up by SQUASHFS_METADATA_SIZE - 1 (8191 bytes) and divided by SQUASHFS_METADATA_SIZE overflows again and produces a length of 0. The effect of the 0 length computation: In conjunction with the corrupted xattr_ids field, the filesystem also has a corrupted xattr_table_start value, where it matches the end of filesystem value of 850. This causes the following sanity check code to fail because the incorrectly computed len of 0 matches the incorrect size of the table reported by the superblock (0 bytes). len = SQUASHFS_XATTR_BLOCK_BYTES(*xattr_ids); indexes = SQUASHFS_XATTR_BLOCKS(*xattr_ids); /* * The computed size of the index table (len bytes) should exactly * match the table start and end points */ start = table_start + sizeof(*id_table); end = msblk->bytes_used; if (len != (end - start)) return ERR_PTR(-EINVAL); Changing the xattr_ids variable to be "usigned int" fixes the flaw on a 64-bit system. This relies on the fact the computation is widened by the unsigned long type of the sizeof operator. Casting the variable to u64 in the above macro fixes this flaw on a 32-bit system. It also means 64-bit systems do not implicitly rely on the type of the sizeof operator to widen the computation. [1] https://lore.kernel.org/lkml/000000000000cd44f005f1a0f17f@google.com/
CVE-2023-52934 1 Linux 1 Linux Kernel 2025-10-28 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/MADV_COLLAPSE: catch !none !huge !bad pmd lookups In commit 34488399fa08 ("mm/madvise: add file and shmem support to MADV_COLLAPSE") we make the following change to find_pmd_or_thp_or_none(): - if (!pmd_present(pmde)) - return SCAN_PMD_NULL; + if (pmd_none(pmde)) + return SCAN_PMD_NONE; This was for-use by MADV_COLLAPSE file/shmem codepaths, where MADV_COLLAPSE might identify a pte-mapped hugepage, only to have khugepaged race-in, free the pte table, and clear the pmd. Such codepaths include: A) If we find a suitably-aligned compound page of order HPAGE_PMD_ORDER already in the pagecache. B) In retract_page_tables(), if we fail to grab mmap_lock for the target mm/address. In these cases, collapse_pte_mapped_thp() really does expect a none (not just !present) pmd, and we want to suitably identify that case separate from the case where no pmd is found, or it's a bad-pmd (of course, many things could happen once we drop mmap_lock, and the pmd could plausibly undergo multiple transitions due to intervening fault, split, etc). Regardless, the code is prepared install a huge-pmd only when the existing pmd entry is either a genuine pte-table-mapping-pmd, or the none-pmd. However, the commit introduces a logical hole; namely, that we've allowed !none- && !huge- && !bad-pmds to be classified as genuine pte-table-mapping-pmds. One such example that could leak through are swap entries. The pmd values aren't checked again before use in pte_offset_map_lock(), which is expecting nothing less than a genuine pte-table-mapping-pmd. We want to put back the !pmd_present() check (below the pmd_none() check), but need to be careful to deal with subtleties in pmd transitions and treatments by various arch. The issue is that __split_huge_pmd_locked() temporarily clears the present bit (or otherwise marks the entry as invalid), but pmd_present() and pmd_trans_huge() still need to return true while the pmd is in this transitory state. For example, x86's pmd_present() also checks the _PAGE_PSE , riscv's version also checks the _PAGE_LEAF bit, and arm64 also checks a PMD_PRESENT_INVALID bit. Covering all 4 cases for x86 (all checks done on the same pmd value): 1) pmd_present() && pmd_trans_huge() All we actually know here is that the PSE bit is set. Either: a) We aren't racing with __split_huge_page(), and PRESENT or PROTNONE is set. => huge-pmd b) We are currently racing with __split_huge_page(). The danger here is that we proceed as-if we have a huge-pmd, but really we are looking at a pte-mapping-pmd. So, what is the risk of this danger? The only relevant path is: madvise_collapse() -> collapse_pte_mapped_thp() Where we might just incorrectly report back "success", when really the memory isn't pmd-backed. This is fine, since split could happen immediately after (actually) successful madvise_collapse(). So, it should be safe to just assume huge-pmd here. 2) pmd_present() && !pmd_trans_huge() Either: a) PSE not set and either PRESENT or PROTNONE is. => pte-table-mapping pmd (or PROT_NONE) b) devmap. This routine can be called immediately after unlocking/locking mmap_lock -- or called with no locks held (see khugepaged_scan_mm_slot()), so previous VMA checks have since been invalidated. 3) !pmd_present() && pmd_trans_huge() Not possible. 4) !pmd_present() && !pmd_trans_huge() Neither PRESENT nor PROTNONE set => not present I've checked all archs that implement pmd_trans_huge() (arm64, riscv, powerpc, longarch, x86, mips, s390) and this logic roughly translates (though devmap treatment is unique to x86 and powerpc, and (3) doesn't necessarily hold in general -- but that doesn't matter since !pmd_present() always takes failure path). Also, add a comment above find_pmd_or_thp_or_none() ---truncated---
CVE-2023-52940 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-10-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm: multi-gen LRU: fix crash during cgroup migration lru_gen_migrate_mm() assumes lru_gen_add_mm() runs prior to itself. This isn't true for the following scenario: CPU 1 CPU 2 clone() cgroup_can_fork() cgroup_procs_write() cgroup_post_fork() task_lock() lru_gen_migrate_mm() task_unlock() task_lock() lru_gen_add_mm() task_unlock() And when the above happens, kernel crashes because of linked list corruption (mm_struct->lru_gen.list).
CVE-2023-52941 1 Linux 1 Linux Kernel 2025-10-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: can: isotp: split tx timer into transmission and timeout The timer for the transmission of isotp PDUs formerly had two functions: 1. send two consecutive frames with a given time gap 2. monitor the timeouts for flow control frames and the echo frames This led to larger txstate checks and potentially to a problem discovered by syzbot which enabled the panic_on_warn feature while testing. The former 'txtimer' function is split into 'txfrtimer' and 'txtimer' to handle the two above functionalities with separate timer callbacks. The two simplified timers now run in one-shot mode and make the state transitions (especially with isotp_rcv_echo) better understandable.
CVE-2023-52942 1 Linux 1 Linux Kernel 2025-10-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: cgroup/cpuset: Fix wrong check in update_parent_subparts_cpumask() It was found that the check to see if a partition could use up all the cpus from the parent cpuset in update_parent_subparts_cpumask() was incorrect. As a result, it is possible to leave parent with no effective cpu left even if there are tasks in the parent cpuset. This can lead to system panic as reported in [1]. Fix this probem by updating the check to fail the enabling the partition if parent's effective_cpus is a subset of the child's cpus_allowed. Also record the error code when an error happens in update_prstate() and add a test case where parent partition and child have the same cpu list and parent has task. Enabling partition in the child will fail in this case. [1] https://www.spinics.net/lists/cgroups/msg36254.html
CVE-2023-52980 1 Linux 1 Linux Kernel 2025-10-28 7.8 High
In the Linux kernel, the following vulnerability has been resolved: block: ublk: extending queue_size to fix overflow When validating drafted SPDK ublk target, in a case that assigning large queue depth to multiqueue ublk device, ublk target would run into a weird incorrect state. During rounds of review and debug, An overflow bug was found in ublk driver. In ublk_cmd.h, UBLK_MAX_QUEUE_DEPTH is 4096 which means each ublk queue depth can be set as large as 4096. But when setting qd for a ublk device, sizeof(struct ublk_queue) + depth * sizeof(struct ublk_io) will be larger than 65535 if qd is larger than 2728. Then queue_size is overflowed, and ublk_get_queue() references a wrong pointer position. The wrong content of ublk_queue elements will lead to out-of-bounds memory access. Extend queue_size in ublk_device as "unsigned int".
CVE-2023-52981 1 Linux 1 Linux Kernel 2025-10-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/i915: Fix request ref counting during error capture & debugfs dump When GuC support was added to error capture, the reference counting around the request object was broken. Fix it up. The context based search manages the spinlocking around the search internally. So it needs to grab the reference count internally as well. The execlist only request based search relies on external locking, so it needs an external reference count but within the spinlock not outside it. The only other caller of the context based search is the code for dumping engine state to debugfs. That code wasn't previously getting an explicit reference at all as it does everything while holding the execlist specific spinlock. So, that needs updaing as well as that spinlock doesn't help when using GuC submission. Rather than trying to conditionally get/put depending on submission model, just change it to always do the get/put. v2: Explicitly document adding an extra blank line in some dense code (Andy Shevchenko). Fix multiple potential null pointer derefs in case of no request found (some spotted by Tvrtko, but there was more!). Also fix a leaked request in case of !started and another in __guc_reset_context now that intel_context_find_active_request is actually reference counting the returned request. v3: Add a _get suffix to intel_context_find_active_request now that it grabs a reference (Daniele). v4: Split the intel_guc_find_hung_context change to a separate patch and rename intel_context_find_active_request_get to intel_context_get_active_request (Tvrtko). v5: s/locking/reference counting/ in commit message (Tvrtko) (cherry picked from commit 3700e353781e27f1bc7222f51f2cc36cbeb9b4ec)
CVE-2023-47108 2 Opentelemetry, Redhat 6 Opentelemetry, Acm, Multicluster Engine and 3 more 2025-10-28 7.5 High
OpenTelemetry-Go Contrib is a collection of third-party packages for OpenTelemetry-Go. Starting in version 0.37.0 and prior to version 0.46.0, the grpc Unary Server Interceptor out of the box adds labels `net.peer.sock.addr` and `net.peer.sock.port` that have unbound cardinality. It leads to the server's potential memory exhaustion when many malicious requests are sent. An attacker can easily flood the peer address and port for requests. Version 0.46.0 contains a fix for this issue. As a workaround to stop being affected, a view removing the attributes can be used. The other possibility is to disable grpc metrics instrumentation by passing `otelgrpc.WithMeterProvider` option with `noop.NewMeterProvider`.
CVE-2023-52982 1 Linux 1 Linux Kernel 2025-10-28 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fscache: Use wait_on_bit() to wait for the freeing of relinquished volume The freeing of relinquished volume will wake up the pending volume acquisition by using wake_up_bit(), however it is mismatched with wait_var_event() used in fscache_wait_on_volume_collision() and it will never wake up the waiter in the wait-queue because these two functions operate on different wait-queues. According to the implementation in fscache_wait_on_volume_collision(), if the wake-up of pending acquisition is delayed longer than 20 seconds (e.g., due to the delay of on-demand fd closing), the first wait_var_event_timeout() will timeout and the following wait_var_event() will hang forever as shown below: FS-Cache: Potential volume collision new=00000024 old=00000022 ...... INFO: task mount:1148 blocked for more than 122 seconds. Not tainted 6.1.0-rc6+ #1 task:mount state:D stack:0 pid:1148 ppid:1 Call Trace: <TASK> __schedule+0x2f6/0xb80 schedule+0x67/0xe0 fscache_wait_on_volume_collision.cold+0x80/0x82 __fscache_acquire_volume+0x40d/0x4e0 erofs_fscache_register_volume+0x51/0xe0 [erofs] erofs_fscache_register_fs+0x19c/0x240 [erofs] erofs_fc_fill_super+0x746/0xaf0 [erofs] vfs_get_super+0x7d/0x100 get_tree_nodev+0x16/0x20 erofs_fc_get_tree+0x20/0x30 [erofs] vfs_get_tree+0x24/0xb0 path_mount+0x2fa/0xa90 do_mount+0x7c/0xa0 __x64_sys_mount+0x8b/0xe0 do_syscall_64+0x30/0x60 entry_SYSCALL_64_after_hwframe+0x46/0xb0 Considering that wake_up_bit() is more selective, so fix it by using wait_on_bit() instead of wait_var_event() to wait for the freeing of relinquished volume. In addition because waitqueue_active() is used in wake_up_bit() and clear_bit() doesn't imply any memory barrier, use clear_and_wake_up_bit() to add the missing memory barrier between cursor->flags and waitqueue_active().
CVE-2025-12425 2025-10-28 N/A
Local Privilege Escalation.This issue affects BLU-IC2: through 1.19.5; BLU-IC4: through 1.19.5 .
CVE-2025-34294 2025-10-28 N/A
Wazuh's File Integrity Monitoring (FIM), when configured with automatic threat removal, contains a time-of-check/time-of-use (TOCTOU) race condition that can allow a local, low-privileged attacker to cause the Wazuh service (running as NT AUTHORITY\SYSTEM) to delete attacker-controlled files or paths. The root cause is insufficient synchronization and lack of robust final-path validation in the threat-removal workflow: the agent records an active-response action and proceeds to perform deletion without guaranteeing the deletion target is the originally intended file. This can result in SYSTEM-level arbitrary file or folder deletion and consequent local privilege escalation. Wazuh made an attempted fix via pull request 8697 on 2025-07-10, but that change was incomplete.
CVE-2025-12424 2025-10-28 N/A
Privilege Escalation through SUID-bit Binary.This issue affects BLU-IC2: through 1.19.5; BLU-IC4: through 1.19.5 .