| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
macintosh: fix possible memory leak in macio_add_one_device()
Afer commit 1fa5ae857bb1 ("driver core: get rid of struct device's
bus_id string array"), the name of device is allocated dynamically. It
needs to be freed when of_device_register() fails. Call put_device() to
give up the reference that's taken in device_initialize(), so that it
can be freed in kobject_cleanup() when the refcount hits 0.
macio device is freed in macio_release_dev(), so the kfree() can be
removed. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/core: Make sure "ib_port" is valid when access sysfs node
The "ib_port" structure must be set before adding the sysfs kobject,
and reset after removing it, otherwise it may crash when accessing
the sysfs node:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000050
Mem abort info:
ESR = 0x96000006
Exception class = DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000006
CM = 0, WnR = 0
user pgtable: 4k pages, 48-bit VAs, pgdp = 00000000e85f5ba5
[0000000000000050] pgd=0000000848fd9003, pud=000000085b387003, pmd=0000000000000000
Internal error: Oops: 96000006 [#2] PREEMPT SMP
Modules linked in: ib_umad(O) mlx5_ib(O) nfnetlink_cttimeout(E) nfnetlink(E) act_gact(E) cls_flower(E) sch_ingress(E) openvswitch(E) nsh(E) nf_nat_ipv6(E) nf_nat_ipv4(E) nf_conncount(E) nf_nat(E) nf_conntrack(E) nf_defrag_ipv6(E) nf_defrag_ipv4(E) mst_pciconf(O) ipmi_devintf(E) ipmi_msghandler(E) ipmb_dev_int(OE) mlx5_core(O) mlxfw(O) mlxdevm(O) auxiliary(O) ib_uverbs(O) ib_core(O) mlx_compat(O) psample(E) sbsa_gwdt(E) uio_pdrv_genirq(E) uio(E) mlxbf_pmc(OE) mlxbf_gige(OE) mlxbf_tmfifo(OE) gpio_mlxbf2(OE) pwr_mlxbf(OE) mlx_trio(OE) i2c_mlxbf(OE) mlx_bootctl(OE) bluefield_edac(OE) knem(O) ip_tables(E) ipv6(E) crc_ccitt(E) [last unloaded: mst_pci]
Process grep (pid: 3372, stack limit = 0x0000000022055c92)
CPU: 5 PID: 3372 Comm: grep Tainted: G D OE 4.19.161-mlnx.47.gadcd9e3 #1
Hardware name: https://www.mellanox.com BlueField SoC/BlueField SoC, BIOS BlueField:3.9.2-15-ga2403ab Sep 8 2022
pstate: 40000005 (nZcv daif -PAN -UAO)
pc : hw_stat_port_show+0x4c/0x80 [ib_core]
lr : port_attr_show+0x40/0x58 [ib_core]
sp : ffff000029f43b50
x29: ffff000029f43b50 x28: 0000000019375000
x27: ffff8007b821a540 x26: ffff000029f43e30
x25: 0000000000008000 x24: ffff000000eaa958
x23: 0000000000001000 x22: ffff8007a4ce3000
x21: ffff8007baff8000 x20: ffff8007b9066ac0
x19: ffff8007bae97578 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000
x15: 0000000000000000 x14: 0000000000000000
x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000000
x9 : 0000000000000000 x8 : ffff8007a4ce4000
x7 : 0000000000000000 x6 : 000000000000003f
x5 : ffff000000e6a280 x4 : ffff8007a4ce3000
x3 : 0000000000000000 x2 : aaaaaaaaaaaaaaab
x1 : ffff8007b9066a10 x0 : ffff8007baff8000
Call trace:
hw_stat_port_show+0x4c/0x80 [ib_core]
port_attr_show+0x40/0x58 [ib_core]
sysfs_kf_seq_show+0x8c/0x150
kernfs_seq_show+0x44/0x50
seq_read+0x1b4/0x45c
kernfs_fop_read+0x148/0x1d8
__vfs_read+0x58/0x180
vfs_read+0x94/0x154
ksys_read+0x68/0xd8
__arm64_sys_read+0x28/0x34
el0_svc_common+0x88/0x18c
el0_svc_handler+0x78/0x94
el0_svc+0x8/0xe8
Code: f2955562 aa1603e4 aa1503e0 f9405683 (f9402861) |
| In the Linux kernel, the following vulnerability has been resolved:
ntb_netdev: Use dev_kfree_skb_any() in interrupt context
TX/RX callback handlers (ntb_netdev_tx_handler(),
ntb_netdev_rx_handler()) can be called in interrupt
context via the DMA framework when the respective
DMA operations have completed. As such, any calls
by these routines to free skb's, should use the
interrupt context safe dev_kfree_skb_any() function.
Previously, these callback handlers would call the
interrupt unsafe version of dev_kfree_skb(). This has
not presented an issue on Intel IOAT DMA engines as
that driver utilizes tasklets rather than a hard
interrupt handler, like the AMD PTDMA DMA driver.
On AMD systems, a kernel WARNING message is
encountered, which is being issued from
skb_release_head_state() due to in_hardirq()
being true.
Besides the user visible WARNING from the kernel,
the other symptom of this bug was that TCP/IP performance
across the ntb_netdev interface was very poor, i.e.
approximately an order of magnitude below what was
expected. With the repair to use dev_kfree_skb_any(),
kernel WARNINGs from skb_release_head_state() ceased
and TCP/IP performance, as measured by iperf, was on
par with expected results, approximately 20 Gb/s on
AMD Milan based server. Note that this performance
is comparable with Intel based servers. |
| In the Linux kernel, the following vulnerability has been resolved:
rtc: class: Fix potential memleak in devm_rtc_allocate_device()
devm_rtc_allocate_device() will alloc a rtc_device first, and then run
dev_set_name(). If dev_set_name() failed, the rtc_device will memleak.
Move devm_add_action_or_reset() in front of dev_set_name() to prevent
memleak.
unreferenced object 0xffff888110a53000 (size 2048):
comm "python3", pid 470, jiffies 4296078308 (age 58.882s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 08 30 a5 10 81 88 ff ff .........0......
08 30 a5 10 81 88 ff ff 00 00 00 00 00 00 00 00 .0..............
backtrace:
[<000000004aac0364>] kmalloc_trace+0x21/0x110
[<000000000ff02202>] devm_rtc_allocate_device+0xd4/0x400
[<000000001bdf5639>] devm_rtc_device_register+0x1a/0x80
[<00000000351bf81c>] rx4581_probe+0xdd/0x110 [rtc_rx4581]
[<00000000f0eba0ae>] spi_probe+0xde/0x130
[<00000000bff89ee8>] really_probe+0x175/0x3f0
[<00000000128e8d84>] __driver_probe_device+0xe6/0x170
[<00000000ee5bf913>] device_driver_attach+0x32/0x80
[<00000000f3f28f92>] bind_store+0x10b/0x1a0
[<000000009ff812d8>] drv_attr_store+0x49/0x70
[<000000008139c323>] sysfs_kf_write+0x8d/0xb0
[<00000000b6146e01>] kernfs_fop_write_iter+0x214/0x2d0
[<00000000ecbe3895>] vfs_write+0x61a/0x7d0
[<00000000aa2196ea>] ksys_write+0xc8/0x190
[<0000000046a600f5>] do_syscall_64+0x37/0x90
[<00000000541a336f>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
| In the Linux kernel, the following vulnerability has been resolved:
functionfs: fix the open/removal races
ffs_epfile_open() can race with removal, ending up with file->private_data
pointing to freed object.
There is a total count of opened files on functionfs (both ep0 and
dynamic ones) and when it hits zero, dynamic files get removed.
Unfortunately, that removal can happen while another thread is
in ffs_epfile_open(), but has not incremented the count yet.
In that case open will succeed, leaving us with UAF on any subsequent
read() or write().
The root cause is that ffs->opened is misused; atomic_dec_and_test() vs.
atomic_add_return() is not a good idea, when object remains visible all
along.
To untangle that
* serialize openers on ffs->mutex (both for ep0 and for dynamic files)
* have dynamic ones use atomic_inc_not_zero() and fail if we had
zero ->opened; in that case the file we are opening is doomed.
* have the inodes of dynamic files marked on removal (from the
callback of simple_recursive_removal()) - clear ->i_private there.
* have open of dynamic ones verify they hadn't been already removed,
along with checking that state is FFS_ACTIVE. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Reject narrower access to pointer ctx fields
The following BPF program, simplified from a syzkaller repro, causes a
kernel warning:
r0 = *(u8 *)(r1 + 169);
exit;
With pointer field sk being at offset 168 in __sk_buff. This access is
detected as a narrower read in bpf_skb_is_valid_access because it
doesn't match offsetof(struct __sk_buff, sk). It is therefore allowed
and later proceeds to bpf_convert_ctx_access. Note that for the
"is_narrower_load" case in the convert_ctx_accesses(), the insn->off
is aligned, so the cnt may not be 0 because it matches the
offsetof(struct __sk_buff, sk) in the bpf_convert_ctx_access. However,
the target_size stays 0 and the verifier errors with a kernel warning:
verifier bug: error during ctx access conversion(1)
This patch fixes that to return a proper "invalid bpf_context access
off=X size=Y" error on the load instruction.
The same issue affects multiple other fields in context structures that
allow narrow access. Some other non-affected fields (for sk_msg,
sk_lookup, and sockopt) were also changed to use bpf_ctx_range_ptr for
consistency.
Note this syzkaller crash was reported in the "Closes" link below, which
used to be about a different bug, fixed in
commit fce7bd8e385a ("bpf/verifier: Handle BPF_LOAD_ACQ instructions
in insn_def_regno()"). Because syzbot somehow confused the two bugs,
the new crash and repro didn't get reported to the mailing list. |
| In the Linux kernel, the following vulnerability has been resolved:
bridge: mcast: Fix use-after-free during router port configuration
The bridge maintains a global list of ports behind which a multicast
router resides. The list is consulted during forwarding to ensure
multicast packets are forwarded to these ports even if the ports are not
member in the matching MDB entry.
When per-VLAN multicast snooping is enabled, the per-port multicast
context is disabled on each port and the port is removed from the global
router port list:
# ip link add name br1 up type bridge vlan_filtering 1 mcast_snooping 1
# ip link add name dummy1 up master br1 type dummy
# ip link set dev dummy1 type bridge_slave mcast_router 2
$ bridge -d mdb show | grep router
router ports on br1: dummy1
# ip link set dev br1 type bridge mcast_vlan_snooping 1
$ bridge -d mdb show | grep router
However, the port can be re-added to the global list even when per-VLAN
multicast snooping is enabled:
# ip link set dev dummy1 type bridge_slave mcast_router 0
# ip link set dev dummy1 type bridge_slave mcast_router 2
$ bridge -d mdb show | grep router
router ports on br1: dummy1
Since commit 4b30ae9adb04 ("net: bridge: mcast: re-implement
br_multicast_{enable, disable}_port functions"), when per-VLAN multicast
snooping is enabled, multicast disablement on a port will disable the
per-{port, VLAN} multicast contexts and not the per-port one. As a
result, a port will remain in the global router port list even after it
is deleted. This will lead to a use-after-free [1] when the list is
traversed (when adding a new port to the list, for example):
# ip link del dev dummy1
# ip link add name dummy2 up master br1 type dummy
# ip link set dev dummy2 type bridge_slave mcast_router 2
Similarly, stale entries can also be found in the per-VLAN router port
list. When per-VLAN multicast snooping is disabled, the per-{port, VLAN}
contexts are disabled on each port and the port is removed from the
per-VLAN router port list:
# ip link add name br1 up type bridge vlan_filtering 1 mcast_snooping 1 mcast_vlan_snooping 1
# ip link add name dummy1 up master br1 type dummy
# bridge vlan add vid 2 dev dummy1
# bridge vlan global set vid 2 dev br1 mcast_snooping 1
# bridge vlan set vid 2 dev dummy1 mcast_router 2
$ bridge vlan global show dev br1 vid 2 | grep router
router ports: dummy1
# ip link set dev br1 type bridge mcast_vlan_snooping 0
$ bridge vlan global show dev br1 vid 2 | grep router
However, the port can be re-added to the per-VLAN list even when
per-VLAN multicast snooping is disabled:
# bridge vlan set vid 2 dev dummy1 mcast_router 0
# bridge vlan set vid 2 dev dummy1 mcast_router 2
$ bridge vlan global show dev br1 vid 2 | grep router
router ports: dummy1
When the VLAN is deleted from the port, the per-{port, VLAN} multicast
context will not be disabled since multicast snooping is not enabled
on the VLAN. As a result, the port will remain in the per-VLAN router
port list even after it is no longer member in the VLAN. This will lead
to a use-after-free [2] when the list is traversed (when adding a new
port to the list, for example):
# ip link add name dummy2 up master br1 type dummy
# bridge vlan add vid 2 dev dummy2
# bridge vlan del vid 2 dev dummy1
# bridge vlan set vid 2 dev dummy2 mcast_router 2
Fix these issues by removing the port from the relevant (global or
per-VLAN) router port list in br_multicast_port_ctx_deinit(). The
function is invoked during port deletion with the per-port multicast
context and during VLAN deletion with the per-{port, VLAN} multicast
context.
Note that deleting the multicast router timer is not enough as it only
takes care of the temporary multicast router states (1 or 3) and not the
permanent one (2).
[1]
BUG: KASAN: slab-out-of-bounds in br_multicast_add_router.part.0+0x3f1/0x560
Write of size 8 at addr ffff888004a67328 by task ip/384
[...]
Call Trace:
<TASK>
dump_stack
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
usb: core: config: Prevent OOB read in SS endpoint companion parsing
usb_parse_ss_endpoint_companion() checks descriptor type before length,
enabling a potentially odd read outside of the buffer size.
Fix this up by checking the size first before looking at any of the
fields in the descriptor. |
| In the Linux kernel, the following vulnerability has been resolved:
ARM: tegra: Use I/O memcpy to write to IRAM
Kasan crashes the kernel trying to check boundaries when using the
normal memcpy. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: dwc3: Remove WARN_ON for device endpoint command timeouts
This commit addresses a rarely observed endpoint command timeout
which causes kernel panic due to warn when 'panic_on_warn' is enabled
and unnecessary call trace prints when 'panic_on_warn' is disabled.
It is seen during fast software-controlled connect/disconnect testcases.
The following is one such endpoint command timeout that we observed:
1. Connect
=======
->dwc3_thread_interrupt
->dwc3_ep0_interrupt
->configfs_composite_setup
->composite_setup
->usb_ep_queue
->dwc3_gadget_ep0_queue
->__dwc3_gadget_ep0_queue
->__dwc3_ep0_do_control_data
->dwc3_send_gadget_ep_cmd
2. Disconnect
==========
->dwc3_thread_interrupt
->dwc3_gadget_disconnect_interrupt
->dwc3_ep0_reset_state
->dwc3_ep0_end_control_data
->dwc3_send_gadget_ep_cmd
In the issue scenario, in Exynos platforms, we observed that control
transfers for the previous connect have not yet been completed and end
transfer command sent as a part of the disconnect sequence and
processing of USB_ENDPOINT_HALT feature request from the host timeout.
This maybe an expected scenario since the controller is processing EP
commands sent as a part of the previous connect. It maybe better to
remove WARN_ON in all places where device endpoint commands are sent to
avoid unnecessary kernel panic due to warn. |
| In the Linux kernel, the following vulnerability has been resolved:
cifs: prevent NULL pointer dereference in UTF16 conversion
There can be a NULL pointer dereference bug here. NULL is passed to
__cifs_sfu_make_node without checks, which passes it unchecked to
cifs_strndup_to_utf16, which in turn passes it to
cifs_local_to_utf16_bytes where '*from' is dereferenced, causing a crash.
This patch adds a check for NULL 'src' in cifs_strndup_to_utf16 and
returns NULL early to prevent dereferencing NULL pointer.
Found by Linux Verification Center (linuxtesting.org) with SVACE |
| In the Linux kernel, the following vulnerability has been resolved:
fs: writeback: fix use-after-free in __mark_inode_dirty()
An use-after-free issue occurred when __mark_inode_dirty() get the
bdi_writeback that was in the progress of switching.
CPU: 1 PID: 562 Comm: systemd-random- Not tainted 6.6.56-gb4403bd46a8e #1
......
pstate: 60400005 (nZCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __mark_inode_dirty+0x124/0x418
lr : __mark_inode_dirty+0x118/0x418
sp : ffffffc08c9dbbc0
........
Call trace:
__mark_inode_dirty+0x124/0x418
generic_update_time+0x4c/0x60
file_modified+0xcc/0xd0
ext4_buffered_write_iter+0x58/0x124
ext4_file_write_iter+0x54/0x704
vfs_write+0x1c0/0x308
ksys_write+0x74/0x10c
__arm64_sys_write+0x1c/0x28
invoke_syscall+0x48/0x114
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x40/0xe4
el0t_64_sync_handler+0x120/0x12c
el0t_64_sync+0x194/0x198
Root cause is:
systemd-random-seed kworker
----------------------------------------------------------------------
___mark_inode_dirty inode_switch_wbs_work_fn
spin_lock(&inode->i_lock);
inode_attach_wb
locked_inode_to_wb_and_lock_list
get inode->i_wb
spin_unlock(&inode->i_lock);
spin_lock(&wb->list_lock)
spin_lock(&inode->i_lock)
inode_io_list_move_locked
spin_unlock(&wb->list_lock)
spin_unlock(&inode->i_lock)
spin_lock(&old_wb->list_lock)
inode_do_switch_wbs
spin_lock(&inode->i_lock)
inode->i_wb = new_wb
spin_unlock(&inode->i_lock)
spin_unlock(&old_wb->list_lock)
wb_put_many(old_wb, nr_switched)
cgwb_release
old wb released
wb_wakeup_delayed() accesses wb,
then trigger the use-after-free
issue
Fix this race condition by holding inode spinlock until
wb_wakeup_delayed() finished. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: mwifiex: Initialize the chan_stats array to zero
The adapter->chan_stats[] array is initialized in
mwifiex_init_channel_scan_gap() with vmalloc(), which doesn't zero out
memory. The array is filled in mwifiex_update_chan_statistics()
and then the user can query the data in mwifiex_cfg80211_dump_survey().
There are two potential issues here. What if the user calls
mwifiex_cfg80211_dump_survey() before the data has been filled in.
Also the mwifiex_update_chan_statistics() function doesn't necessarily
initialize the whole array. Since the array was not initialized at
the start that could result in an information leak.
Also this array is pretty small. It's a maximum of 900 bytes so it's
more appropriate to use kcalloc() instead vmalloc(). |
| In the Linux kernel, the following vulnerability has been resolved:
blk-mq: fix possible memleak when register 'hctx' failed
There's issue as follows when do fault injection test:
unreferenced object 0xffff888132a9f400 (size 512):
comm "insmod", pid 308021, jiffies 4324277909 (age 509.733s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 08 f4 a9 32 81 88 ff ff ...........2....
08 f4 a9 32 81 88 ff ff 00 00 00 00 00 00 00 00 ...2............
backtrace:
[<00000000e8952bb4>] kmalloc_node_trace+0x22/0xa0
[<00000000f9980e0f>] blk_mq_alloc_and_init_hctx+0x3f1/0x7e0
[<000000002e719efa>] blk_mq_realloc_hw_ctxs+0x1e6/0x230
[<000000004f1fda40>] blk_mq_init_allocated_queue+0x27e/0x910
[<00000000287123ec>] __blk_mq_alloc_disk+0x67/0xf0
[<00000000a2a34657>] 0xffffffffa2ad310f
[<00000000b173f718>] 0xffffffffa2af824a
[<0000000095a1dabb>] do_one_initcall+0x87/0x2a0
[<00000000f32fdf93>] do_init_module+0xdf/0x320
[<00000000cbe8541e>] load_module+0x3006/0x3390
[<0000000069ed1bdb>] __do_sys_finit_module+0x113/0x1b0
[<00000000a1a29ae8>] do_syscall_64+0x35/0x80
[<000000009cd878b0>] entry_SYSCALL_64_after_hwframe+0x46/0xb0
Fault injection context as follows:
kobject_add
blk_mq_register_hctx
blk_mq_sysfs_register
blk_register_queue
device_add_disk
null_add_dev.part.0 [null_blk]
As 'blk_mq_register_hctx' may already add some objects when failed halfway,
but there isn't do fallback, caller don't know which objects add failed.
To solve above issue just do fallback when add objects failed halfway in
'blk_mq_register_hctx'. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: remove a BUG_ON in ext4_mb_release_group_pa()
If a malicious fuzzer overwrites the ext4 superblock while it is
mounted such that the s_first_data_block is set to a very large
number, the calculation of the block group can underflow, and trigger
a BUG_ON check. Change this to be an ext4_warning so that we don't
crash the kernel. |
| In the Linux kernel, the following vulnerability has been resolved:
kobject: Add sanity check for kset->kobj.ktype in kset_register()
When I register a kset in the following way:
static struct kset my_kset;
kobject_set_name(&my_kset.kobj, "my_kset");
ret = kset_register(&my_kset);
A null pointer dereference exception is occurred:
[ 4453.568337] Unable to handle kernel NULL pointer dereference at \
virtual address 0000000000000028
... ...
[ 4453.810361] Call trace:
[ 4453.813062] kobject_get_ownership+0xc/0x34
[ 4453.817493] kobject_add_internal+0x98/0x274
[ 4453.822005] kset_register+0x5c/0xb4
[ 4453.825820] my_kobj_init+0x44/0x1000 [my_kset]
... ...
Because I didn't initialize my_kset.kobj.ktype.
According to the description in Documentation/core-api/kobject.rst:
- A ktype is the type of object that embeds a kobject. Every structure
that embeds a kobject needs a corresponding ktype.
So add sanity check to make sure kset->kobj.ktype is not NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: processor: Check for null return of devm_kzalloc() in fch_misc_setup()
devm_kzalloc() may fail, clk_data->name might be NULL and will
cause a NULL pointer dereference later.
[ rjw: Subject and changelog edits ] |
| In the Linux kernel, the following vulnerability has been resolved:
fs: jfs: Fix UBSAN: array-index-out-of-bounds in dbAllocDmapLev
Syzkaller reported the following issue:
UBSAN: array-index-out-of-bounds in fs/jfs/jfs_dmap.c:1965:6
index -84 is out of range for type 's8[341]' (aka 'signed char[341]')
CPU: 1 PID: 4995 Comm: syz-executor146 Not tainted 6.4.0-rc6-syzkaller-00037-gb6dad5178cea #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/27/2023
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x1e7/0x2d0 lib/dump_stack.c:106
ubsan_epilogue lib/ubsan.c:217 [inline]
__ubsan_handle_out_of_bounds+0x11c/0x150 lib/ubsan.c:348
dbAllocDmapLev+0x3e5/0x430 fs/jfs/jfs_dmap.c:1965
dbAllocCtl+0x113/0x920 fs/jfs/jfs_dmap.c:1809
dbAllocAG+0x28f/0x10b0 fs/jfs/jfs_dmap.c:1350
dbAlloc+0x658/0xca0 fs/jfs/jfs_dmap.c:874
dtSplitUp fs/jfs/jfs_dtree.c:974 [inline]
dtInsert+0xda7/0x6b00 fs/jfs/jfs_dtree.c:863
jfs_create+0x7b6/0xbb0 fs/jfs/namei.c:137
lookup_open fs/namei.c:3492 [inline]
open_last_lookups fs/namei.c:3560 [inline]
path_openat+0x13df/0x3170 fs/namei.c:3788
do_filp_open+0x234/0x490 fs/namei.c:3818
do_sys_openat2+0x13f/0x500 fs/open.c:1356
do_sys_open fs/open.c:1372 [inline]
__do_sys_openat fs/open.c:1388 [inline]
__se_sys_openat fs/open.c:1383 [inline]
__x64_sys_openat+0x247/0x290 fs/open.c:1383
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x7f1f4e33f7e9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 51 14 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 c0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007ffc21129578 EFLAGS: 00000246 ORIG_RAX: 0000000000000101
RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f1f4e33f7e9
RDX: 000000000000275a RSI: 0000000020000040 RDI: 00000000ffffff9c
RBP: 00007f1f4e2ff080 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f1f4e2ff110
R13: 0000000000000000 R14: 0000000000000000 R15: 0000000000000000
</TASK>
The bug occurs when the dbAllocDmapLev()function attempts to access
dp->tree.stree[leafidx + LEAFIND] while the leafidx value is negative.
To rectify this, the patch introduces a safeguard within the
dbAllocDmapLev() function. A check has been added to verify if leafidx is
negative. If it is, the function immediately returns an I/O error, preventing
any further execution that could potentially cause harm.
Tested via syzbot. |
| In the Linux kernel, the following vulnerability has been resolved:
start_kernel: Add __no_stack_protector function attribute
Back during the discussion of
commit a9a3ed1eff36 ("x86: Fix early boot crash on gcc-10, third try")
we discussed the need for a function attribute to control the omission
of stack protectors on a per-function basis; at the time Clang had
support for no_stack_protector but GCC did not. This was fixed in
gcc-11. Now that the function attribute is available, let's start using
it.
Callers of boot_init_stack_canary need to use this function attribute
unless they're compiled with -fno-stack-protector, otherwise the canary
stored in the stack slot of the caller will differ upon the call to
boot_init_stack_canary. This will lead to a call to __stack_chk_fail()
then panic. |
| In the Linux kernel, the following vulnerability has been resolved:
xfrm: fix slab-use-after-free in decode_session6
When the xfrm device is set to the qdisc of the sfb type, the cb field
of the sent skb may be modified during enqueuing. Then,
slab-use-after-free may occur when the xfrm device sends IPv6 packets.
The stack information is as follows:
BUG: KASAN: slab-use-after-free in decode_session6+0x103f/0x1890
Read of size 1 at addr ffff8881111458ef by task swapper/3/0
CPU: 3 PID: 0 Comm: swapper/3 Not tainted 6.4.0-next-20230707 #409
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014
Call Trace:
<IRQ>
dump_stack_lvl+0xd9/0x150
print_address_description.constprop.0+0x2c/0x3c0
kasan_report+0x11d/0x130
decode_session6+0x103f/0x1890
__xfrm_decode_session+0x54/0xb0
xfrmi_xmit+0x173/0x1ca0
dev_hard_start_xmit+0x187/0x700
sch_direct_xmit+0x1a3/0xc30
__qdisc_run+0x510/0x17a0
__dev_queue_xmit+0x2215/0x3b10
neigh_connected_output+0x3c2/0x550
ip6_finish_output2+0x55a/0x1550
ip6_finish_output+0x6b9/0x1270
ip6_output+0x1f1/0x540
ndisc_send_skb+0xa63/0x1890
ndisc_send_rs+0x132/0x6f0
addrconf_rs_timer+0x3f1/0x870
call_timer_fn+0x1a0/0x580
expire_timers+0x29b/0x4b0
run_timer_softirq+0x326/0x910
__do_softirq+0x1d4/0x905
irq_exit_rcu+0xb7/0x120
sysvec_apic_timer_interrupt+0x97/0xc0
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x1a/0x20
RIP: 0010:intel_idle_hlt+0x23/0x30
Code: 1f 84 00 00 00 00 00 f3 0f 1e fa 41 54 41 89 d4 0f 1f 44 00 00 66 90 0f 1f 44 00 00 0f 00 2d c4 9f ab 00 0f 1f 44 00 00 fb f4 <fa> 44 89 e0 41 5c c3 66 0f 1f 44 00 00 f3 0f 1e fa 41 54 41 89 d4
RSP: 0018:ffffc90000197d78 EFLAGS: 00000246
RAX: 00000000000a83c3 RBX: ffffe8ffffd09c50 RCX: ffffffff8a22d8e5
RDX: 0000000000000001 RSI: ffffffff8d3f8080 RDI: ffffe8ffffd09c50
RBP: ffffffff8d3f8080 R08: 0000000000000001 R09: ffffed1026ba6d9d
R10: ffff888135d36ceb R11: 0000000000000001 R12: 0000000000000001
R13: ffffffff8d3f8100 R14: 0000000000000001 R15: 0000000000000000
cpuidle_enter_state+0xd3/0x6f0
cpuidle_enter+0x4e/0xa0
do_idle+0x2fe/0x3c0
cpu_startup_entry+0x18/0x20
start_secondary+0x200/0x290
secondary_startup_64_no_verify+0x167/0x16b
</TASK>
Allocated by task 939:
kasan_save_stack+0x22/0x40
kasan_set_track+0x25/0x30
__kasan_slab_alloc+0x7f/0x90
kmem_cache_alloc_node+0x1cd/0x410
kmalloc_reserve+0x165/0x270
__alloc_skb+0x129/0x330
inet6_ifa_notify+0x118/0x230
__ipv6_ifa_notify+0x177/0xbe0
addrconf_dad_completed+0x133/0xe00
addrconf_dad_work+0x764/0x1390
process_one_work+0xa32/0x16f0
worker_thread+0x67d/0x10c0
kthread+0x344/0x440
ret_from_fork+0x1f/0x30
The buggy address belongs to the object at ffff888111145800
which belongs to the cache skbuff_small_head of size 640
The buggy address is located 239 bytes inside of
freed 640-byte region [ffff888111145800, ffff888111145a80)
As commit f855691975bb ("xfrm6: Fix the nexthdr offset in
_decode_session6.") showed, xfrm_decode_session was originally intended
only for the receive path. IP6CB(skb)->nhoff is not set during
transmission. Therefore, set the cb field in the skb to 0 before
sending packets. |