| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
cpu/hotplug: Don't offline the last non-isolated CPU
If a system has isolated CPUs via the "isolcpus=" command line parameter,
then an attempt to offline the last housekeeping CPU will result in a
WARN_ON() when rebuilding the scheduler domains and a subsequent panic due
to and unhandled empty CPU mas in partition_sched_domains_locked().
cpuset_hotplug_workfn()
rebuild_sched_domains_locked()
ndoms = generate_sched_domains(&doms, &attr);
cpumask_and(doms[0], top_cpuset.effective_cpus, housekeeping_cpumask(HK_FLAG_DOMAIN));
Thus results in an empty CPU mask which triggers the warning and then the
subsequent crash:
WARNING: CPU: 4 PID: 80 at kernel/sched/topology.c:2366 build_sched_domains+0x120c/0x1408
Call trace:
build_sched_domains+0x120c/0x1408
partition_sched_domains_locked+0x234/0x880
rebuild_sched_domains_locked+0x37c/0x798
rebuild_sched_domains+0x30/0x58
cpuset_hotplug_workfn+0x2a8/0x930
Unable to handle kernel paging request at virtual address fffe80027ab37080
partition_sched_domains_locked+0x318/0x880
rebuild_sched_domains_locked+0x37c/0x798
Aside of the resulting crash, it does not make any sense to offline the last
last housekeeping CPU.
Prevent this by masking out the non-housekeeping CPUs when selecting a
target CPU for initiating the CPU unplug operation via the work queue. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/hugetlb: fix missing hugetlb_lock for resv uncharge
There is a recent report on UFFDIO_COPY over hugetlb:
https://lore.kernel.org/all/000000000000ee06de0616177560@google.com/
350: lockdep_assert_held(&hugetlb_lock);
Should be an issue in hugetlb but triggered in an userfault context, where
it goes into the unlikely path where two threads modifying the resv map
together. Mike has a fix in that path for resv uncharge but it looks like
the locking criteria was overlooked: hugetlb_cgroup_uncharge_folio_rsvd()
will update the cgroup pointer, so it requires to be called with the lock
held. |
| Improper handling of symbolic links in Ivanti Connect Secure before version 22.7R2.8 or 22.8R2, Ivanti Policy Secure before 22.7R1.5, Ivanti ZTA Gateway before 22.8R2.3-723 and Ivanti Neurons for Secure Access before 22.8R1.4 (Fix deployed on 02-Aug-2025) allows a local authenticated attacker to read arbitrary files on disk. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Fix WARN_ON in iommu probe path
Commit 1a75cc710b95 ("iommu/vt-d: Use rbtree to track iommu probed
devices") adds all devices probed by the iommu driver in a rbtree
indexed by the source ID of each device. It assumes that each device
has a unique source ID. This assumption is incorrect and the VT-d
spec doesn't state this requirement either.
The reason for using a rbtree to track devices is to look up the device
with PCI bus and devfunc in the paths of handling ATS invalidation time
out error and the PRI I/O page faults. Both are PCI ATS feature related.
Only track the devices that have PCI ATS capabilities in the rbtree to
avoid unnecessary WARN_ON in the iommu probe path. Otherwise, on some
platforms below kernel splat will be displayed and the iommu probe results
in failure.
WARNING: CPU: 3 PID: 166 at drivers/iommu/intel/iommu.c:158 intel_iommu_probe_device+0x319/0xd90
Call Trace:
<TASK>
? __warn+0x7e/0x180
? intel_iommu_probe_device+0x319/0xd90
? report_bug+0x1f8/0x200
? handle_bug+0x3c/0x70
? exc_invalid_op+0x18/0x70
? asm_exc_invalid_op+0x1a/0x20
? intel_iommu_probe_device+0x319/0xd90
? debug_mutex_init+0x37/0x50
__iommu_probe_device+0xf2/0x4f0
iommu_probe_device+0x22/0x70
iommu_bus_notifier+0x1e/0x40
notifier_call_chain+0x46/0x150
blocking_notifier_call_chain+0x42/0x60
bus_notify+0x2f/0x50
device_add+0x5ed/0x7e0
platform_device_add+0xf5/0x240
mfd_add_devices+0x3f9/0x500
? preempt_count_add+0x4c/0xa0
? up_write+0xa2/0x1b0
? __debugfs_create_file+0xe3/0x150
intel_lpss_probe+0x49f/0x5b0
? pci_conf1_write+0xa3/0xf0
intel_lpss_pci_probe+0xcf/0x110 [intel_lpss_pci]
pci_device_probe+0x95/0x120
really_probe+0xd9/0x370
? __pfx___driver_attach+0x10/0x10
__driver_probe_device+0x73/0x150
driver_probe_device+0x19/0xa0
__driver_attach+0xb6/0x180
? __pfx___driver_attach+0x10/0x10
bus_for_each_dev+0x77/0xd0
bus_add_driver+0x114/0x210
driver_register+0x5b/0x110
? __pfx_intel_lpss_pci_driver_init+0x10/0x10 [intel_lpss_pci]
do_one_initcall+0x57/0x2b0
? kmalloc_trace+0x21e/0x280
? do_init_module+0x1e/0x210
do_init_module+0x5f/0x210
load_module+0x1d37/0x1fc0
? init_module_from_file+0x86/0xd0
init_module_from_file+0x86/0xd0
idempotent_init_module+0x17c/0x230
__x64_sys_finit_module+0x56/0xb0
do_syscall_64+0x6e/0x140
entry_SYSCALL_64_after_hwframe+0x71/0x79 |
| CubeCart is an ecommerce software solution. Prior to version 6.5.11, there is an absence of automatic session expiration following a user's password change. This oversight poses a security risk, as if a user forgets to log out from a location where they accessed their account, an unauthorized user can maintain access even after the password has been changed. Due to this bug, if an account has already been compromised, the legitimate user has no way to revoke the attacker’s access. The malicious actor retains full access to the account until their session naturally expires. This means the account remains insecure even after the password has been changed. This issue has been patched in version 6.5.11. |
| A vulnerability has been identified in Polarion V2310 (All versions), Polarion V2404 (All versions < V2404.4). The affected application contains a XML External Entity Injection (XXE) vulnerability in the docx import feature. This could allow an authenticated remote attacker to read arbitrary data from the application server. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: qla2xxx: Fix warning message due to adisc being flushed
Fix warning message due to adisc being flushed. Linux kernel triggered a
warning message where a different error code type is not matching up with
the expected type. Add additional translation of one error code type to
another.
WARNING: CPU: 2 PID: 1131623 at drivers/scsi/qla2xxx/qla_init.c:498
qla2x00_async_adisc_sp_done+0x294/0x2b0 [qla2xxx]
CPU: 2 PID: 1131623 Comm: drmgr Not tainted 5.13.0-rc1-autotest #1
..
GPR28: c000000aaa9c8890 c0080000079ab678 c00000140a104800 c00000002bd19000
NIP [c00800000790857c] qla2x00_async_adisc_sp_done+0x294/0x2b0 [qla2xxx]
LR [c008000007908578] qla2x00_async_adisc_sp_done+0x290/0x2b0 [qla2xxx]
Call Trace:
[c00000001cdc3620] [c008000007908578] qla2x00_async_adisc_sp_done+0x290/0x2b0 [qla2xxx] (unreliable)
[c00000001cdc3710] [c0080000078f3080] __qla2x00_abort_all_cmds+0x1b8/0x580 [qla2xxx]
[c00000001cdc3840] [c0080000078f589c] qla2x00_abort_all_cmds+0x34/0xd0 [qla2xxx]
[c00000001cdc3880] [c0080000079153d8] qla2x00_abort_isp_cleanup+0x3f0/0x570 [qla2xxx]
[c00000001cdc3920] [c0080000078fb7e8] qla2x00_remove_one+0x3d0/0x480 [qla2xxx]
[c00000001cdc39b0] [c00000000071c274] pci_device_remove+0x64/0x120
[c00000001cdc39f0] [c0000000007fb818] device_release_driver_internal+0x168/0x2a0
[c00000001cdc3a30] [c00000000070e304] pci_stop_bus_device+0xb4/0x100
[c00000001cdc3a70] [c00000000070e4f0] pci_stop_and_remove_bus_device+0x20/0x40
[c00000001cdc3aa0] [c000000000073940] pci_hp_remove_devices+0x90/0x130
[c00000001cdc3b30] [c0080000070704d0] disable_slot+0x38/0x90 [rpaphp] [
c00000001cdc3b60] [c00000000073eb4c] power_write_file+0xcc/0x180
[c00000001cdc3be0] [c0000000007354bc] pci_slot_attr_store+0x3c/0x60
[c00000001cdc3c00] [c00000000055f820] sysfs_kf_write+0x60/0x80 [c00000001cdc3c20]
[c00000000055df10] kernfs_fop_write_iter+0x1a0/0x290
[c00000001cdc3c70] [c000000000447c4c] new_sync_write+0x14c/0x1d0
[c00000001cdc3d10] [c00000000044b134] vfs_write+0x224/0x330
[c00000001cdc3d60] [c00000000044b3f4] ksys_write+0x74/0x130
[c00000001cdc3db0] [c00000000002df70] system_call_exception+0x150/0x2d0
[c00000001cdc3e10] [c00000000000d45c] system_call_common+0xec/0x278 |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: fix panic on out-of-bounds guest IRQ
As guest_irq is coming from KVM_IRQFD API call, it may trigger
crash in svm_update_pi_irte() due to out-of-bounds:
crash> bt
PID: 22218 TASK: ffff951a6ad74980 CPU: 73 COMMAND: "vcpu8"
#0 [ffffb1ba6707fa40] machine_kexec at ffffffff8565b397
#1 [ffffb1ba6707fa90] __crash_kexec at ffffffff85788a6d
#2 [ffffb1ba6707fb58] crash_kexec at ffffffff8578995d
#3 [ffffb1ba6707fb70] oops_end at ffffffff85623c0d
#4 [ffffb1ba6707fb90] no_context at ffffffff856692c9
#5 [ffffb1ba6707fbf8] exc_page_fault at ffffffff85f95b51
#6 [ffffb1ba6707fc50] asm_exc_page_fault at ffffffff86000ace
[exception RIP: svm_update_pi_irte+227]
RIP: ffffffffc0761b53 RSP: ffffb1ba6707fd08 RFLAGS: 00010086
RAX: ffffb1ba6707fd78 RBX: ffffb1ba66d91000 RCX: 0000000000000001
RDX: 00003c803f63f1c0 RSI: 000000000000019a RDI: ffffb1ba66db2ab8
RBP: 000000000000019a R8: 0000000000000040 R9: ffff94ca41b82200
R10: ffffffffffffffcf R11: 0000000000000001 R12: 0000000000000001
R13: 0000000000000001 R14: ffffffffffffffcf R15: 000000000000005f
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#7 [ffffb1ba6707fdb8] kvm_irq_routing_update at ffffffffc09f19a1 [kvm]
#8 [ffffb1ba6707fde0] kvm_set_irq_routing at ffffffffc09f2133 [kvm]
#9 [ffffb1ba6707fe18] kvm_vm_ioctl at ffffffffc09ef544 [kvm]
RIP: 00007f143c36488b RSP: 00007f143a4e04b8 RFLAGS: 00000246
RAX: ffffffffffffffda RBX: 00007f05780041d0 RCX: 00007f143c36488b
RDX: 00007f05780041d0 RSI: 000000004008ae6a RDI: 0000000000000020
RBP: 00000000000004e8 R8: 0000000000000008 R9: 00007f05780041e0
R10: 00007f0578004560 R11: 0000000000000246 R12: 00000000000004e0
R13: 000000000000001a R14: 00007f1424001c60 R15: 00007f0578003bc0
ORIG_RAX: 0000000000000010 CS: 0033 SS: 002b
Vmx have been fix this in commit 3a8b0677fc61 (KVM: VMX: Do not BUG() on
out-of-bounds guest IRQ), so we can just copy source from that to fix
this. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: don't BUG if someone dirty pages without asking ext4 first
[un]pin_user_pages_remote is dirtying pages without properly warning
the file system in advance. A related race was noted by Jan Kara in
2018[1]; however, more recently instead of it being a very hard-to-hit
race, it could be reliably triggered by process_vm_writev(2) which was
discovered by Syzbot[2].
This is technically a bug in mm/gup.c, but arguably ext4 is fragile in
that if some other kernel subsystem dirty pages without properly
notifying the file system using page_mkwrite(), ext4 will BUG, while
other file systems will not BUG (although data will still be lost).
So instead of crashing with a BUG, issue a warning (since there may be
potential data loss) and just mark the page as clean to avoid
unprivileged denial of service attacks until the problem can be
properly fixed. More discussion and background can be found in the
thread starting at [2].
[1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
[2] https://lore.kernel.org/r/Yg0m6IjcNmfaSokM@google.com |
| The txtai framework allows the loading of compressed tar files as embedding indices. While the validate function is intended to prevent path traversal vulnerabilities by ensuring safe filenames, it does not account for symbolic links within the tar file. An attacker is able to write a file anywhere in the filesystem when txtai is used to load untrusted embedding indices |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: add accessors to read/set tp->snd_cwnd
We had various bugs over the years with code
breaking the assumption that tp->snd_cwnd is greater
than zero.
Lately, syzbot reported the WARN_ON_ONCE(!tp->prior_cwnd) added
in commit 8b8a321ff72c ("tcp: fix zero cwnd in tcp_cwnd_reduction")
can trigger, and without a repro we would have to spend
considerable time finding the bug.
Instead of complaining too late, we want to catch where
and when tp->snd_cwnd is set to an illegal value. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix bug_on in ext4_writepages
we got issue as follows:
EXT4-fs error (device loop0): ext4_mb_generate_buddy:1141: group 0, block bitmap and bg descriptor inconsistent: 25 vs 31513 free cls
------------[ cut here ]------------
kernel BUG at fs/ext4/inode.c:2708!
invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 2 PID: 2147 Comm: rep Not tainted 5.18.0-rc2-next-20220413+ #155
RIP: 0010:ext4_writepages+0x1977/0x1c10
RSP: 0018:ffff88811d3e7880 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000001 RCX: ffff88811c098000
RDX: 0000000000000000 RSI: ffff88811c098000 RDI: 0000000000000002
RBP: ffff888128140f50 R08: ffffffffb1ff6387 R09: 0000000000000000
R10: 0000000000000007 R11: ffffed10250281ea R12: 0000000000000001
R13: 00000000000000a4 R14: ffff88811d3e7bb8 R15: ffff888128141028
FS: 00007f443aed9740(0000) GS:ffff8883aef00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020007200 CR3: 000000011c2a4000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
do_writepages+0x130/0x3a0
filemap_fdatawrite_wbc+0x83/0xa0
filemap_flush+0xab/0xe0
ext4_alloc_da_blocks+0x51/0x120
__ext4_ioctl+0x1534/0x3210
__x64_sys_ioctl+0x12c/0x170
do_syscall_64+0x3b/0x90
It may happen as follows:
1. write inline_data inode
vfs_write
new_sync_write
ext4_file_write_iter
ext4_buffered_write_iter
generic_perform_write
ext4_da_write_begin
ext4_da_write_inline_data_begin -> If inline data size too
small will allocate block to write, then mapping will has
dirty page
ext4_da_convert_inline_data_to_extent ->clear EXT4_STATE_MAY_INLINE_DATA
2. fallocate
do_vfs_ioctl
ioctl_preallocate
vfs_fallocate
ext4_fallocate
ext4_convert_inline_data
ext4_convert_inline_data_nolock
ext4_map_blocks -> fail will goto restore data
ext4_restore_inline_data
ext4_create_inline_data
ext4_write_inline_data
ext4_set_inode_state -> set inode EXT4_STATE_MAY_INLINE_DATA
3. writepages
__ext4_ioctl
ext4_alloc_da_blocks
filemap_flush
filemap_fdatawrite_wbc
do_writepages
ext4_writepages
if (ext4_has_inline_data(inode))
BUG_ON(ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
The root cause of this issue is we destory inline data until call
ext4_writepages under delay allocation mode. But there maybe already
convert from inline to extent. To solve this issue, we call
filemap_flush first.. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix bug_on in __es_tree_search
Hulk Robot reported a BUG_ON:
==================================================================
kernel BUG at fs/ext4/extents_status.c:199!
[...]
RIP: 0010:ext4_es_end fs/ext4/extents_status.c:199 [inline]
RIP: 0010:__es_tree_search+0x1e0/0x260 fs/ext4/extents_status.c:217
[...]
Call Trace:
ext4_es_cache_extent+0x109/0x340 fs/ext4/extents_status.c:766
ext4_cache_extents+0x239/0x2e0 fs/ext4/extents.c:561
ext4_find_extent+0x6b7/0xa20 fs/ext4/extents.c:964
ext4_ext_map_blocks+0x16b/0x4b70 fs/ext4/extents.c:4384
ext4_map_blocks+0xe26/0x19f0 fs/ext4/inode.c:567
ext4_getblk+0x320/0x4c0 fs/ext4/inode.c:980
ext4_bread+0x2d/0x170 fs/ext4/inode.c:1031
ext4_quota_read+0x248/0x320 fs/ext4/super.c:6257
v2_read_header+0x78/0x110 fs/quota/quota_v2.c:63
v2_check_quota_file+0x76/0x230 fs/quota/quota_v2.c:82
vfs_load_quota_inode+0x5d1/0x1530 fs/quota/dquot.c:2368
dquot_enable+0x28a/0x330 fs/quota/dquot.c:2490
ext4_quota_enable fs/ext4/super.c:6137 [inline]
ext4_enable_quotas+0x5d7/0x960 fs/ext4/super.c:6163
ext4_fill_super+0xa7c9/0xdc00 fs/ext4/super.c:4754
mount_bdev+0x2e9/0x3b0 fs/super.c:1158
mount_fs+0x4b/0x1e4 fs/super.c:1261
[...]
==================================================================
Above issue may happen as follows:
-------------------------------------
ext4_fill_super
ext4_enable_quotas
ext4_quota_enable
ext4_iget
__ext4_iget
ext4_ext_check_inode
ext4_ext_check
__ext4_ext_check
ext4_valid_extent_entries
Check for overlapping extents does't take effect
dquot_enable
vfs_load_quota_inode
v2_check_quota_file
v2_read_header
ext4_quota_read
ext4_bread
ext4_getblk
ext4_map_blocks
ext4_ext_map_blocks
ext4_find_extent
ext4_cache_extents
ext4_es_cache_extent
ext4_es_cache_extent
__es_tree_search
ext4_es_end
BUG_ON(es->es_lblk + es->es_len < es->es_lblk)
The error ext4 extents is as follows:
0af3 0300 0400 0000 00000000 extent_header
00000000 0100 0000 12000000 extent1
00000000 0100 0000 18000000 extent2
02000000 0400 0000 14000000 extent3
In the ext4_valid_extent_entries function,
if prev is 0, no error is returned even if lblock<=prev.
This was intended to skip the check on the first extent, but
in the error image above, prev=0+1-1=0 when checking the second extent,
so even though lblock<=prev, the function does not return an error.
As a result, bug_ON occurs in __es_tree_search and the system panics.
To solve this problem, we only need to check that:
1. The lblock of the first extent is not less than 0.
2. The lblock of the next extent is not less than
the next block of the previous extent.
The same applies to extent_idx. |
| TopQuadrant TopBraid EDG before version 8.0.1 allows an authenticated attacker to upload an XML DTD file and execute JavaScript to read local files or access URLs (XXE). Fixed in 8.0.1 (bug fix: TBS-6721). |
| Jerryscript commit cefd391 was discovered to contain an Assertion Failure via ECMA_STRING_IS_REF_EQUALS_TO_ONE (string_p) in ecma_free_string_list. |
| QuickJS commit 3b45d15 was discovered to contain an Assertion Failure via JS_FreeRuntime(JSRuntime *) at quickjs.c. |
| The WebAssembly Micro Runtime's (WAMR) iwasm package is the executable binary built with WAMR VMcore which supports WebAssembly System Interface (WASI) and command line interface. Anyone running WAMR up to and including version 2.2.0 or WAMR built with libc-uvwasi on Windows is affected by a symlink following vulnerability. On WAMR running in Windows, creating a symlink pointing outside of the preopened directory and subsequently opening it with create flag will create a file on host outside of the sandbox. If the symlink points to an existing host file, it's also possible to open it and read its content. Version 2.3.0 fixes the issue. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/gma500: Fix WARN_ON(lock->magic != lock) error
psb_gem_unpin() calls dma_resv_lock() but the underlying ww_mutex
gets destroyed by drm_gem_object_release() move the
drm_gem_object_release() call in psb_gem_free_object() to after
the unpin to fix the below warning:
[ 79.693962] ------------[ cut here ]------------
[ 79.693992] DEBUG_LOCKS_WARN_ON(lock->magic != lock)
[ 79.694015] WARNING: CPU: 0 PID: 240 at kernel/locking/mutex.c:582 __ww_mutex_lock.constprop.0+0x569/0xfb0
[ 79.694052] Modules linked in: rfcomm snd_seq_dummy snd_hrtimer qrtr bnep ath9k ath9k_common ath9k_hw snd_hda_codec_realtek snd_hda_codec_generic ledtrig_audio snd_hda_codec_hdmi snd_hda_intel ath3k snd_intel_dspcfg mac80211 snd_intel_sdw_acpi btusb snd_hda_codec btrtl btbcm btintel btmtk bluetooth at24 snd_hda_core snd_hwdep uvcvideo snd_seq libarc4 videobuf2_vmalloc ath videobuf2_memops videobuf2_v4l2 videobuf2_common snd_seq_device videodev acer_wmi intel_powerclamp coretemp mc snd_pcm joydev sparse_keymap ecdh_generic pcspkr wmi_bmof cfg80211 i2c_i801 i2c_smbus snd_timer snd r8169 rfkill lpc_ich soundcore acpi_cpufreq zram rtsx_pci_sdmmc mmc_core serio_raw rtsx_pci gma500_gfx(E) video wmi ip6_tables ip_tables i2c_dev fuse
[ 79.694436] CPU: 0 PID: 240 Comm: plymouthd Tainted: G W E 6.0.0-rc3+ #490
[ 79.694457] Hardware name: Packard Bell dot s/SJE01_CT, BIOS V1.10 07/23/2013
[ 79.694469] RIP: 0010:__ww_mutex_lock.constprop.0+0x569/0xfb0
[ 79.694496] Code: ff 85 c0 0f 84 15 fb ff ff 8b 05 ca 3c 11 01 85 c0 0f 85 07 fb ff ff 48 c7 c6 30 cb 84 aa 48 c7 c7 a3 e1 82 aa e8 ac 29 f8 ff <0f> 0b e9 ed fa ff ff e8 5b 83 8a ff 85 c0 74 10 44 8b 0d 98 3c 11
[ 79.694513] RSP: 0018:ffffad1dc048bbe0 EFLAGS: 00010282
[ 79.694623] RAX: 0000000000000028 RBX: 0000000000000000 RCX: 0000000000000000
[ 79.694636] RDX: 0000000000000001 RSI: ffffffffaa8b0ffc RDI: 00000000ffffffff
[ 79.694650] RBP: ffffad1dc048bc80 R08: 0000000000000000 R09: ffffad1dc048ba90
[ 79.694662] R10: 0000000000000003 R11: ffffffffaad62fe8 R12: ffff9ff302103138
[ 79.694675] R13: ffff9ff306ec8000 R14: ffff9ff307779078 R15: ffff9ff3014c0270
[ 79.694690] FS: 00007ff1cccf1740(0000) GS:ffff9ff3bc200000(0000) knlGS:0000000000000000
[ 79.694705] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 79.694719] CR2: 0000559ecbcb4420 CR3: 0000000013210000 CR4: 00000000000006f0
[ 79.694734] Call Trace:
[ 79.694749] <TASK>
[ 79.694761] ? __schedule+0x47f/0x1670
[ 79.694796] ? psb_gem_unpin+0x27/0x1a0 [gma500_gfx]
[ 79.694830] ? lock_is_held_type+0xe3/0x140
[ 79.694864] ? ww_mutex_lock+0x38/0xa0
[ 79.694885] ? __cond_resched+0x1c/0x30
[ 79.694902] ww_mutex_lock+0x38/0xa0
[ 79.694925] psb_gem_unpin+0x27/0x1a0 [gma500_gfx]
[ 79.694964] psb_gem_unpin+0x199/0x1a0 [gma500_gfx]
[ 79.694996] drm_gem_object_release_handle+0x50/0x60
[ 79.695020] ? drm_gem_object_handle_put_unlocked+0xf0/0xf0
[ 79.695042] idr_for_each+0x4b/0xb0
[ 79.695066] ? _raw_spin_unlock_irqrestore+0x30/0x60
[ 79.695095] drm_gem_release+0x1c/0x30
[ 79.695118] drm_file_free.part.0+0x1ea/0x260
[ 79.695150] drm_release+0x6a/0x120
[ 79.695175] __fput+0x9f/0x260
[ 79.695203] task_work_run+0x59/0xa0
[ 79.695227] do_exit+0x387/0xbe0
[ 79.695250] ? seqcount_lockdep_reader_access.constprop.0+0x82/0x90
[ 79.695275] ? lockdep_hardirqs_on+0x7d/0x100
[ 79.695304] do_group_exit+0x33/0xb0
[ 79.695331] __x64_sys_exit_group+0x14/0x20
[ 79.695353] do_syscall_64+0x58/0x80
[ 79.695376] ? up_read+0x17/0x20
[ 79.695401] ? lock_is_held_type+0xe3/0x140
[ 79.695429] ? asm_exc_page_fault+0x22/0x30
[ 79.695450] ? lockdep_hardirqs_on+0x7d/0x100
[ 79.695473] entry_SYSCALL_64_after_hwframe+0x63/0xcd
[ 79.695493] RIP: 0033:0x7ff1ccefe3f1
[ 79.695516] Code: Unable to access opcode bytes at RIP 0x7ff1ccefe3c7.
[ 79.695607] RSP: 002b:00007ffed4413378 EFLAGS:
---truncated--- |
| xzs-mysql 3.8 is vulnerable to Insufficient Session Expiration, which allows attackers to use the session of a deleted admin to do anything. |
| Weblate is a web based localization tool. Versions lower than 5.13.1 contain a vulnerability that causes long session expiry during the second factor verification. The long session expiry could be used to circumvent rate limiting of the second factor. This issue is fixed in version 5.13.1. |