CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
thermal/debugfs: Fix two locking issues with thermal zone debug
With the current thermal zone locking arrangement in the debugfs code,
user space can open the "mitigations" file for a thermal zone before
the zone's debugfs pointer is set which will result in a NULL pointer
dereference in tze_seq_start().
Moreover, thermal_debug_tz_remove() is not called under the thermal
zone lock, so it can run in parallel with the other functions accessing
the thermal zone's struct thermal_debugfs object. Then, it may clear
tz->debugfs after one of those functions has checked it and the
struct thermal_debugfs object may be freed prematurely.
To address the first problem, pass a pointer to the thermal zone's
struct thermal_debugfs object to debugfs_create_file() in
thermal_debug_tz_add() and make tze_seq_start(), tze_seq_next(),
tze_seq_stop(), and tze_seq_show() retrieve it from s->private
instead of a pointer to the thermal zone object. This will ensure
that tz_debugfs will be valid across the "mitigations" file accesses
until thermal_debugfs_remove_id() called by thermal_debug_tz_remove()
removes that file.
To address the second problem, use tz->lock in thermal_debug_tz_remove()
around the tz->debugfs value check (in case the same thermal zone is
removed at the same time in two different threads) and its reset to NULL.
Cc :6.8+ <stable@vger.kernel.org> # 6.8+ |
In the Linux kernel, the following vulnerability has been resolved:
Reapply "drm/qxl: simplify qxl_fence_wait"
This reverts commit 07ed11afb68d94eadd4ffc082b97c2331307c5ea.
Stephen Rostedt reports:
"I went to run my tests on my VMs and the tests hung on boot up.
Unfortunately, the most I ever got out was:
[ 93.607888] Testing event system initcall: OK
[ 93.667730] Running tests on all trace events:
[ 93.669757] Testing all events: OK
[ 95.631064] ------------[ cut here ]------------
Timed out after 60 seconds"
and further debugging points to a possible circular locking dependency
between the console_owner locking and the worker pool locking.
Reverting the commit allows Steve's VM to boot to completion again.
[ This may obviously result in the "[TTM] Buffer eviction failed"
messages again, which was the reason for that original revert. But at
this point this seems preferable to a non-booting system... ] |
In the Linux kernel, the following vulnerability has been resolved:
scsi: lpfc: Release hbalock before calling lpfc_worker_wake_up()
lpfc_worker_wake_up() calls the lpfc_work_done() routine, which takes the
hbalock. Thus, lpfc_worker_wake_up() should not be called while holding the
hbalock to avoid potential deadlock. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: bnx2fc: Remove spin_lock_bh while releasing resources after upload
The session resources are used by FW and driver when session is offloaded,
once session is uploaded these resources are not used. The lock is not
required as these fields won't be used any longer. The offload and upload
calls are sequential, hence lock is not required.
This will suppress following BUG_ON():
[ 449.843143] ------------[ cut here ]------------
[ 449.848302] kernel BUG at mm/vmalloc.c:2727!
[ 449.853072] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[ 449.858712] CPU: 5 PID: 1996 Comm: kworker/u24:2 Not tainted 5.14.0-118.el9.x86_64 #1
Rebooting.
[ 449.867454] Hardware name: Dell Inc. PowerEdge R730/0WCJNT, BIOS 2.3.4 11/08/2016
[ 449.876966] Workqueue: fc_rport_eq fc_rport_work [libfc]
[ 449.882910] RIP: 0010:vunmap+0x2e/0x30
[ 449.887098] Code: 00 65 8b 05 14 a2 f0 4a a9 00 ff ff 00 75 1b 55 48 89 fd e8 34 36 79 00 48 85 ed 74 0b 48 89 ef 31 f6 5d e9 14 fc ff ff 5d c3 <0f> 0b 0f 1f 44 00 00 41 57 41 56 49 89 ce 41 55 49 89 fd 41 54 41
[ 449.908054] RSP: 0018:ffffb83d878b3d68 EFLAGS: 00010206
[ 449.913887] RAX: 0000000080000201 RBX: ffff8f4355133550 RCX: 000000000d400005
[ 449.921843] RDX: 0000000000000001 RSI: 0000000000001000 RDI: ffffb83da53f5000
[ 449.929808] RBP: ffff8f4ac6675800 R08: ffffb83d878b3d30 R09: 00000000000efbdf
[ 449.937774] R10: 0000000000000003 R11: ffff8f434573e000 R12: 0000000000001000
[ 449.945736] R13: 0000000000001000 R14: ffffb83da53f5000 R15: ffff8f43d4ea3ae0
[ 449.953701] FS: 0000000000000000(0000) GS:ffff8f529fc80000(0000) knlGS:0000000000000000
[ 449.962732] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 449.969138] CR2: 00007f8cf993e150 CR3: 0000000efbe10003 CR4: 00000000003706e0
[ 449.977102] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 449.985065] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 449.993028] Call Trace:
[ 449.995756] __iommu_dma_free+0x96/0x100
[ 450.000139] bnx2fc_free_session_resc+0x67/0x240 [bnx2fc]
[ 450.006171] bnx2fc_upload_session+0xce/0x100 [bnx2fc]
[ 450.011910] bnx2fc_rport_event_handler+0x9f/0x240 [bnx2fc]
[ 450.018136] fc_rport_work+0x103/0x5b0 [libfc]
[ 450.023103] process_one_work+0x1e8/0x3c0
[ 450.027581] worker_thread+0x50/0x3b0
[ 450.031669] ? rescuer_thread+0x370/0x370
[ 450.036143] kthread+0x149/0x170
[ 450.039744] ? set_kthread_struct+0x40/0x40
[ 450.044411] ret_from_fork+0x22/0x30
[ 450.048404] Modules linked in: vfat msdos fat xfs nfs_layout_nfsv41_files rpcsec_gss_krb5 auth_rpcgss nfsv4 dns_resolver dm_service_time qedf qed crc8 bnx2fc libfcoe libfc scsi_transport_fc intel_rapl_msr intel_rapl_common x86_pkg_temp_thermal intel_powerclamp dcdbas rapl intel_cstate intel_uncore mei_me pcspkr mei ipmi_ssif lpc_ich ipmi_si fuse zram ext4 mbcache jbd2 loop nfsv3 nfs_acl nfs lockd grace fscache netfs irdma ice sd_mod t10_pi sg ib_uverbs ib_core 8021q garp mrp stp llc mgag200 i2c_algo_bit drm_kms_helper syscopyarea sysfillrect sysimgblt mxm_wmi fb_sys_fops cec crct10dif_pclmul ahci crc32_pclmul bnx2x drm ghash_clmulni_intel libahci rfkill i40e libata megaraid_sas mdio wmi sunrpc lrw dm_crypt dm_round_robin dm_multipath dm_snapshot dm_bufio dm_mirror dm_region_hash dm_log dm_zero dm_mod linear raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx raid6_pq libcrc32c crc32c_intel raid1 raid0 iscsi_ibft squashfs be2iscsi bnx2i cnic uio cxgb4i cxgb4 tls
[ 450.048497] libcxgbi libcxgb qla4xxx iscsi_boot_sysfs iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi edd ipmi_devintf ipmi_msghandler
[ 450.159753] ---[ end trace 712de2c57c64abc8 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
mm: use memalloc_nofs_save() in page_cache_ra_order()
See commit f2c817bed58d ("mm: use memalloc_nofs_save in readahead path"),
ensure that page_cache_ra_order() do not attempt to reclaim file-backed
pages too, or it leads to a deadlock, found issue when test ext4 large
folio.
INFO: task DataXceiver for:7494 blocked for more than 120 seconds.
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:DataXceiver for state:D stack:0 pid:7494 ppid:1 flags:0x00000200
Call trace:
__switch_to+0x14c/0x240
__schedule+0x82c/0xdd0
schedule+0x58/0xf0
io_schedule+0x24/0xa0
__folio_lock+0x130/0x300
migrate_pages_batch+0x378/0x918
migrate_pages+0x350/0x700
compact_zone+0x63c/0xb38
compact_zone_order+0xc0/0x118
try_to_compact_pages+0xb0/0x280
__alloc_pages_direct_compact+0x98/0x248
__alloc_pages+0x510/0x1110
alloc_pages+0x9c/0x130
folio_alloc+0x20/0x78
filemap_alloc_folio+0x8c/0x1b0
page_cache_ra_order+0x174/0x308
ondemand_readahead+0x1c8/0x2b8
page_cache_async_ra+0x68/0xb8
filemap_readahead.isra.0+0x64/0xa8
filemap_get_pages+0x3fc/0x5b0
filemap_splice_read+0xf4/0x280
ext4_file_splice_read+0x2c/0x48 [ext4]
vfs_splice_read.part.0+0xa8/0x118
splice_direct_to_actor+0xbc/0x288
do_splice_direct+0x9c/0x108
do_sendfile+0x328/0x468
__arm64_sys_sendfile64+0x8c/0x148
invoke_syscall+0x4c/0x118
el0_svc_common.constprop.0+0xc8/0xf0
do_el0_svc+0x24/0x38
el0_svc+0x4c/0x1f8
el0t_64_sync_handler+0xc0/0xc8
el0t_64_sync+0x188/0x190 |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nfnetlink_queue: acquire rcu_read_lock() in instance_destroy_rcu()
syzbot reported that nf_reinject() could be called without rcu_read_lock() :
WARNING: suspicious RCU usage
6.9.0-rc7-syzkaller-02060-g5c1672705a1a #0 Not tainted
net/netfilter/nfnetlink_queue.c:263 suspicious rcu_dereference_check() usage!
other info that might help us debug this:
rcu_scheduler_active = 2, debug_locks = 1
2 locks held by syz-executor.4/13427:
#0: ffffffff8e334f60 (rcu_callback){....}-{0:0}, at: rcu_lock_acquire include/linux/rcupdate.h:329 [inline]
#0: ffffffff8e334f60 (rcu_callback){....}-{0:0}, at: rcu_do_batch kernel/rcu/tree.c:2190 [inline]
#0: ffffffff8e334f60 (rcu_callback){....}-{0:0}, at: rcu_core+0xa86/0x1830 kernel/rcu/tree.c:2471
#1: ffff88801ca92958 (&inst->lock){+.-.}-{2:2}, at: spin_lock_bh include/linux/spinlock.h:356 [inline]
#1: ffff88801ca92958 (&inst->lock){+.-.}-{2:2}, at: nfqnl_flush net/netfilter/nfnetlink_queue.c:405 [inline]
#1: ffff88801ca92958 (&inst->lock){+.-.}-{2:2}, at: instance_destroy_rcu+0x30/0x220 net/netfilter/nfnetlink_queue.c:172
stack backtrace:
CPU: 0 PID: 13427 Comm: syz-executor.4 Not tainted 6.9.0-rc7-syzkaller-02060-g5c1672705a1a #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 04/02/2024
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
lockdep_rcu_suspicious+0x221/0x340 kernel/locking/lockdep.c:6712
nf_reinject net/netfilter/nfnetlink_queue.c:323 [inline]
nfqnl_reinject+0x6ec/0x1120 net/netfilter/nfnetlink_queue.c:397
nfqnl_flush net/netfilter/nfnetlink_queue.c:410 [inline]
instance_destroy_rcu+0x1ae/0x220 net/netfilter/nfnetlink_queue.c:172
rcu_do_batch kernel/rcu/tree.c:2196 [inline]
rcu_core+0xafd/0x1830 kernel/rcu/tree.c:2471
handle_softirqs+0x2d6/0x990 kernel/softirq.c:554
__do_softirq kernel/softirq.c:588 [inline]
invoke_softirq kernel/softirq.c:428 [inline]
__irq_exit_rcu+0xf4/0x1c0 kernel/softirq.c:637
irq_exit_rcu+0x9/0x30 kernel/softirq.c:649
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1043 [inline]
sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1043
</IRQ>
<TASK> |
In the Linux kernel, the following vulnerability has been resolved:
ice: fix LAG and VF lock dependency in ice_reset_vf()
9f74a3dfcf83 ("ice: Fix VF Reset paths when interface in a failed over
aggregate"), the ice driver has acquired the LAG mutex in ice_reset_vf().
The commit placed this lock acquisition just prior to the acquisition of
the VF configuration lock.
If ice_reset_vf() acquires the configuration lock via the ICE_VF_RESET_LOCK
flag, this could deadlock with ice_vc_cfg_qs_msg() because it always
acquires the locks in the order of the VF configuration lock and then the
LAG mutex.
Lockdep reports this violation almost immediately on creating and then
removing 2 VF:
======================================================
WARNING: possible circular locking dependency detected
6.8.0-rc6 #54 Tainted: G W O
------------------------------------------------------
kworker/60:3/6771 is trying to acquire lock:
ff40d43e099380a0 (&vf->cfg_lock){+.+.}-{3:3}, at: ice_reset_vf+0x22f/0x4d0 [ice]
but task is already holding lock:
ff40d43ea1961210 (&pf->lag_mutex){+.+.}-{3:3}, at: ice_reset_vf+0xb7/0x4d0 [ice]
which lock already depends on the new lock.
the existing dependency chain (in reverse order) is:
-> #1 (&pf->lag_mutex){+.+.}-{3:3}:
__lock_acquire+0x4f8/0xb40
lock_acquire+0xd4/0x2d0
__mutex_lock+0x9b/0xbf0
ice_vc_cfg_qs_msg+0x45/0x690 [ice]
ice_vc_process_vf_msg+0x4f5/0x870 [ice]
__ice_clean_ctrlq+0x2b5/0x600 [ice]
ice_service_task+0x2c9/0x480 [ice]
process_one_work+0x1e9/0x4d0
worker_thread+0x1e1/0x3d0
kthread+0x104/0x140
ret_from_fork+0x31/0x50
ret_from_fork_asm+0x1b/0x30
-> #0 (&vf->cfg_lock){+.+.}-{3:3}:
check_prev_add+0xe2/0xc50
validate_chain+0x558/0x800
__lock_acquire+0x4f8/0xb40
lock_acquire+0xd4/0x2d0
__mutex_lock+0x9b/0xbf0
ice_reset_vf+0x22f/0x4d0 [ice]
ice_process_vflr_event+0x98/0xd0 [ice]
ice_service_task+0x1cc/0x480 [ice]
process_one_work+0x1e9/0x4d0
worker_thread+0x1e1/0x3d0
kthread+0x104/0x140
ret_from_fork+0x31/0x50
ret_from_fork_asm+0x1b/0x30
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0 CPU1
---- ----
lock(&pf->lag_mutex);
lock(&vf->cfg_lock);
lock(&pf->lag_mutex);
lock(&vf->cfg_lock);
*** DEADLOCK ***
4 locks held by kworker/60:3/6771:
#0: ff40d43e05428b38 ((wq_completion)ice){+.+.}-{0:0}, at: process_one_work+0x176/0x4d0
#1: ff50d06e05197e58 ((work_completion)(&pf->serv_task)){+.+.}-{0:0}, at: process_one_work+0x176/0x4d0
#2: ff40d43ea1960e50 (&pf->vfs.table_lock){+.+.}-{3:3}, at: ice_process_vflr_event+0x48/0xd0 [ice]
#3: ff40d43ea1961210 (&pf->lag_mutex){+.+.}-{3:3}, at: ice_reset_vf+0xb7/0x4d0 [ice]
stack backtrace:
CPU: 60 PID: 6771 Comm: kworker/60:3 Tainted: G W O 6.8.0-rc6 #54
Hardware name:
Workqueue: ice ice_service_task [ice]
Call Trace:
<TASK>
dump_stack_lvl+0x4a/0x80
check_noncircular+0x12d/0x150
check_prev_add+0xe2/0xc50
? save_trace+0x59/0x230
? add_chain_cache+0x109/0x450
validate_chain+0x558/0x800
__lock_acquire+0x4f8/0xb40
? lockdep_hardirqs_on+0x7d/0x100
lock_acquire+0xd4/0x2d0
? ice_reset_vf+0x22f/0x4d0 [ice]
? lock_is_held_type+0xc7/0x120
__mutex_lock+0x9b/0xbf0
? ice_reset_vf+0x22f/0x4d0 [ice]
? ice_reset_vf+0x22f/0x4d0 [ice]
? rcu_is_watching+0x11/0x50
? ice_reset_vf+0x22f/0x4d0 [ice]
ice_reset_vf+0x22f/0x4d0 [ice]
? process_one_work+0x176/0x4d0
ice_process_vflr_event+0x98/0xd0 [ice]
ice_service_task+0x1cc/0x480 [ice]
process_one_work+0x1e9/0x4d0
worker_thread+0x1e1/0x3d0
? __pfx_worker_thread+0x10/0x10
kthread+0x104/0x140
? __pfx_kthread+0x10/0x10
ret_from_fork+0x31/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1b/0x30
</TASK>
To avoid deadlock, we must acquire the LAG
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
smb3: missing lock when picking channel
Coverity spotted a place where we should have been holding the
channel lock when accessing the ses channel index.
Addresses-Coverity: 1582039 ("Data race condition (MISSING_LOCK)") |
In the Linux kernel, the following vulnerability has been resolved:
smb3: fix lock ordering potential deadlock in cifs_sync_mid_result
Coverity spotted that the cifs_sync_mid_result function could deadlock
"Thread deadlock (ORDER_REVERSAL) lock_order: Calling spin_lock acquires
lock TCP_Server_Info.srv_lock while holding lock TCP_Server_Info.mid_lock"
Addresses-Coverity: 1590401 ("Thread deadlock (ORDER_REVERSAL)") |
In the Linux kernel, the following vulnerability has been resolved:
HID: i2c-hid: remove I2C_HID_READ_PENDING flag to prevent lock-up
The flag I2C_HID_READ_PENDING is used to serialize I2C operations.
However, this is not necessary, because I2C core already has its own
locking for that.
More importantly, this flag can cause a lock-up: if the flag is set in
i2c_hid_xfer() and an interrupt happens, the interrupt handler
(i2c_hid_irq) will check this flag and return immediately without doing
anything, then the interrupt handler will be invoked again in an
infinite loop.
Since interrupt handler is an RT task, it takes over the CPU and the
flag-clearing task never gets scheduled, thus we have a lock-up.
Delete this unnecessary flag. |
In the Linux kernel, the following vulnerability has been resolved:
dma: xilinx_dpdma: Fix locking
There are several places where either chan->lock or chan->vchan.lock was
not held. Add appropriate locking. This fixes lockdep warnings like
[ 31.077578] ------------[ cut here ]------------
[ 31.077831] WARNING: CPU: 2 PID: 40 at drivers/dma/xilinx/xilinx_dpdma.c:834 xilinx_dpdma_chan_queue_transfer+0x274/0x5e0
[ 31.077953] Modules linked in:
[ 31.078019] CPU: 2 PID: 40 Comm: kworker/u12:1 Not tainted 6.6.20+ #98
[ 31.078102] Hardware name: xlnx,zynqmp (DT)
[ 31.078169] Workqueue: events_unbound deferred_probe_work_func
[ 31.078272] pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 31.078377] pc : xilinx_dpdma_chan_queue_transfer+0x274/0x5e0
[ 31.078473] lr : xilinx_dpdma_chan_queue_transfer+0x270/0x5e0
[ 31.078550] sp : ffffffc083bb2e10
[ 31.078590] x29: ffffffc083bb2e10 x28: 0000000000000000 x27: ffffff880165a168
[ 31.078754] x26: ffffff880164e920 x25: ffffff880164eab8 x24: ffffff880164d480
[ 31.078920] x23: ffffff880165a148 x22: ffffff880164e988 x21: 0000000000000000
[ 31.079132] x20: ffffffc082aa3000 x19: ffffff880164e880 x18: 0000000000000000
[ 31.079295] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
[ 31.079453] x14: 0000000000000000 x13: ffffff8802263dc0 x12: 0000000000000001
[ 31.079613] x11: 0001ffc083bb2e34 x10: 0001ff880164e98f x9 : 0001ffc082aa3def
[ 31.079824] x8 : 0001ffc082aa3dec x7 : 0000000000000000 x6 : 0000000000000516
[ 31.079982] x5 : ffffffc7f8d43000 x4 : ffffff88003c9c40 x3 : ffffffffffffffff
[ 31.080147] x2 : ffffffc7f8d43000 x1 : 00000000000000c0 x0 : 0000000000000000
[ 31.080307] Call trace:
[ 31.080340] xilinx_dpdma_chan_queue_transfer+0x274/0x5e0
[ 31.080518] xilinx_dpdma_issue_pending+0x11c/0x120
[ 31.080595] zynqmp_disp_layer_update+0x180/0x3ac
[ 31.080712] zynqmp_dpsub_plane_atomic_update+0x11c/0x21c
[ 31.080825] drm_atomic_helper_commit_planes+0x20c/0x684
[ 31.080951] drm_atomic_helper_commit_tail+0x5c/0xb0
[ 31.081139] commit_tail+0x234/0x294
[ 31.081246] drm_atomic_helper_commit+0x1f8/0x210
[ 31.081363] drm_atomic_commit+0x100/0x140
[ 31.081477] drm_client_modeset_commit_atomic+0x318/0x384
[ 31.081634] drm_client_modeset_commit_locked+0x8c/0x24c
[ 31.081725] drm_client_modeset_commit+0x34/0x5c
[ 31.081812] __drm_fb_helper_restore_fbdev_mode_unlocked+0x104/0x168
[ 31.081899] drm_fb_helper_set_par+0x50/0x70
[ 31.081971] fbcon_init+0x538/0xc48
[ 31.082047] visual_init+0x16c/0x23c
[ 31.082207] do_bind_con_driver.isra.0+0x2d0/0x634
[ 31.082320] do_take_over_console+0x24c/0x33c
[ 31.082429] do_fbcon_takeover+0xbc/0x1b0
[ 31.082503] fbcon_fb_registered+0x2d0/0x34c
[ 31.082663] register_framebuffer+0x27c/0x38c
[ 31.082767] __drm_fb_helper_initial_config_and_unlock+0x5c0/0x91c
[ 31.082939] drm_fb_helper_initial_config+0x50/0x74
[ 31.083012] drm_fbdev_dma_client_hotplug+0xb8/0x108
[ 31.083115] drm_client_register+0xa0/0xf4
[ 31.083195] drm_fbdev_dma_setup+0xb0/0x1cc
[ 31.083293] zynqmp_dpsub_drm_init+0x45c/0x4e0
[ 31.083431] zynqmp_dpsub_probe+0x444/0x5e0
[ 31.083616] platform_probe+0x8c/0x13c
[ 31.083713] really_probe+0x258/0x59c
[ 31.083793] __driver_probe_device+0xc4/0x224
[ 31.083878] driver_probe_device+0x70/0x1c0
[ 31.083961] __device_attach_driver+0x108/0x1e0
[ 31.084052] bus_for_each_drv+0x9c/0x100
[ 31.084125] __device_attach+0x100/0x298
[ 31.084207] device_initial_probe+0x14/0x20
[ 31.084292] bus_probe_device+0xd8/0xdc
[ 31.084368] deferred_probe_work_func+0x11c/0x180
[ 31.084451] process_one_work+0x3ac/0x988
[ 31.084643] worker_thread+0x398/0x694
[ 31.084752] kthread+0x1bc/0x1c0
[ 31.084848] ret_from_fork+0x10/0x20
[ 31.084932] irq event stamp: 64549
[ 31.084970] hardirqs last enabled at (64548): [<ffffffc081adf35c>] _raw_spin_unlock_irqrestore+0x80/0x90
[ 31.085157]
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
af_unix: Clear stale u->oob_skb.
syzkaller started to report deadlock of unix_gc_lock after commit
4090fa373f0e ("af_unix: Replace garbage collection algorithm."), but
it just uncovers the bug that has been there since commit 314001f0bf92
("af_unix: Add OOB support").
The repro basically does the following.
from socket import *
from array import array
c1, c2 = socketpair(AF_UNIX, SOCK_STREAM)
c1.sendmsg([b'a'], [(SOL_SOCKET, SCM_RIGHTS, array("i", [c2.fileno()]))], MSG_OOB)
c2.recv(1) # blocked as no normal data in recv queue
c2.close() # done async and unblock recv()
c1.close() # done async and trigger GC
A socket sends its file descriptor to itself as OOB data and tries to
receive normal data, but finally recv() fails due to async close().
The problem here is wrong handling of OOB skb in manage_oob(). When
recvmsg() is called without MSG_OOB, manage_oob() is called to check
if the peeked skb is OOB skb. In such a case, manage_oob() pops it
out of the receive queue but does not clear unix_sock(sk)->oob_skb.
This is wrong in terms of uAPI.
Let's say we send "hello" with MSG_OOB, and "world" without MSG_OOB.
The 'o' is handled as OOB data. When recv() is called twice without
MSG_OOB, the OOB data should be lost.
>>> from socket import *
>>> c1, c2 = socketpair(AF_UNIX, SOCK_STREAM, 0)
>>> c1.send(b'hello', MSG_OOB) # 'o' is OOB data
5
>>> c1.send(b'world')
5
>>> c2.recv(5) # OOB data is not received
b'hell'
>>> c2.recv(5) # OOB date is skipped
b'world'
>>> c2.recv(5, MSG_OOB) # This should return an error
b'o'
In the same situation, TCP actually returns -EINVAL for the last
recv().
Also, if we do not clear unix_sk(sk)->oob_skb, unix_poll() always set
EPOLLPRI even though the data has passed through by previous recv().
To avoid these issues, we must clear unix_sk(sk)->oob_skb when dequeuing
it from recv queue.
The reason why the old GC did not trigger the deadlock is because the
old GC relied on the receive queue to detect the loop.
When it is triggered, the socket with OOB data is marked as GC candidate
because file refcount == inflight count (1). However, after traversing
all inflight sockets, the socket still has a positive inflight count (1),
thus the socket is excluded from candidates. Then, the old GC lose the
chance to garbage-collect the socket.
With the old GC, the repro continues to create true garbage that will
never be freed nor detected by kmemleak as it's linked to the global
inflight list. That's why we couldn't even notice the issue. |
In the Linux kernel, the following vulnerability has been resolved:
pds_core: Fix pdsc_check_pci_health function to use work thread
When the driver notices fw_status == 0xff it tries to perform a PCI
reset on itself via pci_reset_function() in the context of the driver's
health thread. However, pdsc_reset_prepare calls
pdsc_stop_health_thread(), which attempts to stop/flush the health
thread. This results in a deadlock because the stop/flush will never
complete since the driver called pci_reset_function() from the health
thread context. Fix by changing the pdsc_check_pci_health_function()
to queue a newly introduced pdsc_pci_reset_thread() on the pdsc's
work queue.
Unloading the driver in the fw_down/dead state uncovered another issue,
which can be seen in the following trace:
WARNING: CPU: 51 PID: 6914 at kernel/workqueue.c:1450 __queue_work+0x358/0x440
[...]
RIP: 0010:__queue_work+0x358/0x440
[...]
Call Trace:
<TASK>
? __warn+0x85/0x140
? __queue_work+0x358/0x440
? report_bug+0xfc/0x1e0
? handle_bug+0x3f/0x70
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? __queue_work+0x358/0x440
queue_work_on+0x28/0x30
pdsc_devcmd_locked+0x96/0xe0 [pds_core]
pdsc_devcmd_reset+0x71/0xb0 [pds_core]
pdsc_teardown+0x51/0xe0 [pds_core]
pdsc_remove+0x106/0x200 [pds_core]
pci_device_remove+0x37/0xc0
device_release_driver_internal+0xae/0x140
driver_detach+0x48/0x90
bus_remove_driver+0x6d/0xf0
pci_unregister_driver+0x2e/0xa0
pdsc_cleanup_module+0x10/0x780 [pds_core]
__x64_sys_delete_module+0x142/0x2b0
? syscall_trace_enter.isra.18+0x126/0x1a0
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
RIP: 0033:0x7fbd9d03a14b
[...]
Fix this by preventing the devcmd reset if the FW is not running. |
In the Linux kernel, the following vulnerability has been resolved:
accel/ivpu: Fix deadlock in context_xa
ivpu_device->context_xa is locked both in kernel thread and IRQ context.
It requires XA_FLAGS_LOCK_IRQ flag to be passed during initialization
otherwise the lock could be acquired from a thread and interrupted by
an IRQ that locks it for the second time causing the deadlock.
This deadlock was reported by lockdep and observed in internal tests. |
In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Prevent lock inversion deadlock in map delete elem
syzkaller started using corpuses where a BPF tracing program deletes
elements from a sockmap/sockhash map. Because BPF tracing programs can be
invoked from any interrupt context, locks taken during a map_delete_elem
operation must be hardirq-safe. Otherwise a deadlock due to lock inversion
is possible, as reported by lockdep:
CPU0 CPU1
---- ----
lock(&htab->buckets[i].lock);
local_irq_disable();
lock(&host->lock);
lock(&htab->buckets[i].lock);
<Interrupt>
lock(&host->lock);
Locks in sockmap are hardirq-unsafe by design. We expects elements to be
deleted from sockmap/sockhash only in task (normal) context with interrupts
enabled, or in softirq context.
Detect when map_delete_elem operation is invoked from a context which is
_not_ hardirq-unsafe, that is interrupts are disabled, and bail out with an
error.
Note that map updates are not affected by this issue. BPF verifier does not
allow updating sockmap/sockhash from a BPF tracing program today. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix deadlock while reading mqd from debugfs
An errant disk backup on my desktop got into debugfs and triggered the
following deadlock scenario in the amdgpu debugfs files. The machine
also hard-resets immediately after those lines are printed (although I
wasn't able to reproduce that part when reading by hand):
[ 1318.016074][ T1082] ======================================================
[ 1318.016607][ T1082] WARNING: possible circular locking dependency detected
[ 1318.017107][ T1082] 6.8.0-rc7-00015-ge0c8221b72c0 #17 Not tainted
[ 1318.017598][ T1082] ------------------------------------------------------
[ 1318.018096][ T1082] tar/1082 is trying to acquire lock:
[ 1318.018585][ T1082] ffff98c44175d6a0 (&mm->mmap_lock){++++}-{3:3}, at: __might_fault+0x40/0x80
[ 1318.019084][ T1082]
[ 1318.019084][ T1082] but task is already holding lock:
[ 1318.020052][ T1082] ffff98c4c13f55f8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: amdgpu_debugfs_mqd_read+0x6a/0x250 [amdgpu]
[ 1318.020607][ T1082]
[ 1318.020607][ T1082] which lock already depends on the new lock.
[ 1318.020607][ T1082]
[ 1318.022081][ T1082]
[ 1318.022081][ T1082] the existing dependency chain (in reverse order) is:
[ 1318.023083][ T1082]
[ 1318.023083][ T1082] -> #2 (reservation_ww_class_mutex){+.+.}-{3:3}:
[ 1318.024114][ T1082] __ww_mutex_lock.constprop.0+0xe0/0x12f0
[ 1318.024639][ T1082] ww_mutex_lock+0x32/0x90
[ 1318.025161][ T1082] dma_resv_lockdep+0x18a/0x330
[ 1318.025683][ T1082] do_one_initcall+0x6a/0x350
[ 1318.026210][ T1082] kernel_init_freeable+0x1a3/0x310
[ 1318.026728][ T1082] kernel_init+0x15/0x1a0
[ 1318.027242][ T1082] ret_from_fork+0x2c/0x40
[ 1318.027759][ T1082] ret_from_fork_asm+0x11/0x20
[ 1318.028281][ T1082]
[ 1318.028281][ T1082] -> #1 (reservation_ww_class_acquire){+.+.}-{0:0}:
[ 1318.029297][ T1082] dma_resv_lockdep+0x16c/0x330
[ 1318.029790][ T1082] do_one_initcall+0x6a/0x350
[ 1318.030263][ T1082] kernel_init_freeable+0x1a3/0x310
[ 1318.030722][ T1082] kernel_init+0x15/0x1a0
[ 1318.031168][ T1082] ret_from_fork+0x2c/0x40
[ 1318.031598][ T1082] ret_from_fork_asm+0x11/0x20
[ 1318.032011][ T1082]
[ 1318.032011][ T1082] -> #0 (&mm->mmap_lock){++++}-{3:3}:
[ 1318.032778][ T1082] __lock_acquire+0x14bf/0x2680
[ 1318.033141][ T1082] lock_acquire+0xcd/0x2c0
[ 1318.033487][ T1082] __might_fault+0x58/0x80
[ 1318.033814][ T1082] amdgpu_debugfs_mqd_read+0x103/0x250 [amdgpu]
[ 1318.034181][ T1082] full_proxy_read+0x55/0x80
[ 1318.034487][ T1082] vfs_read+0xa7/0x360
[ 1318.034788][ T1082] ksys_read+0x70/0xf0
[ 1318.035085][ T1082] do_syscall_64+0x94/0x180
[ 1318.035375][ T1082] entry_SYSCALL_64_after_hwframe+0x46/0x4e
[ 1318.035664][ T1082]
[ 1318.035664][ T1082] other info that might help us debug this:
[ 1318.035664][ T1082]
[ 1318.036487][ T1082] Chain exists of:
[ 1318.036487][ T1082] &mm->mmap_lock --> reservation_ww_class_acquire --> reservation_ww_class_mutex
[ 1318.036487][ T1082]
[ 1318.037310][ T1082] Possible unsafe locking scenario:
[ 1318.037310][ T1082]
[ 1318.037838][ T1082] CPU0 CPU1
[ 1318.038101][ T1082] ---- ----
[ 1318.038350][ T1082] lock(reservation_ww_class_mutex);
[ 1318.038590][ T1082] lock(reservation_ww_class_acquire);
[ 1318.038839][ T1082] lock(reservation_ww_class_mutex);
[ 1318.039083][ T1082] rlock(&mm->mmap_lock);
[ 1318.039328][ T1082]
[ 1318.039328][ T1082] *** DEADLOCK ***
[ 1318.039328][ T1082]
[ 1318.040029][ T1082] 1 lock held by tar/1082:
[ 1318.040259][ T1082] #0: ffff98c4c13f55f8 (reservation_ww_class_mutex){+.+.}-{3:3}, at: amdgpu_debugfs_mqd_read+0x6a/0x250 [amdgpu]
[ 1318.040560][ T1082]
[ 1318.040560][ T1082] stack backtrace:
[
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
drm/nouveau: fix stale locked mutex in nouveau_gem_ioctl_pushbuf
If VM_BIND is enabled on the client the legacy submission ioctl can't be
used, however if a client tries to do so regardless it will return an
error. In this case the clients mutex remained unlocked leading to a
deadlock inside nouveau_drm_postclose or any other nouveau ioctl call. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock with fiemap and extent locking
While working on the patchset to remove extent locking I got a lockdep
splat with fiemap and pagefaulting with my new extent lock replacement
lock.
This deadlock exists with our normal code, we just don't have lockdep
annotations with the extent locking so we've never noticed it.
Since we're copying the fiemap extent to user space on every iteration
we have the chance of pagefaulting. Because we hold the extent lock for
the entire range we could mkwrite into a range in the file that we have
mmap'ed. This would deadlock with the following stack trace
[<0>] lock_extent+0x28d/0x2f0
[<0>] btrfs_page_mkwrite+0x273/0x8a0
[<0>] do_page_mkwrite+0x50/0xb0
[<0>] do_fault+0xc1/0x7b0
[<0>] __handle_mm_fault+0x2fa/0x460
[<0>] handle_mm_fault+0xa4/0x330
[<0>] do_user_addr_fault+0x1f4/0x800
[<0>] exc_page_fault+0x7c/0x1e0
[<0>] asm_exc_page_fault+0x26/0x30
[<0>] rep_movs_alternative+0x33/0x70
[<0>] _copy_to_user+0x49/0x70
[<0>] fiemap_fill_next_extent+0xc8/0x120
[<0>] emit_fiemap_extent+0x4d/0xa0
[<0>] extent_fiemap+0x7f8/0xad0
[<0>] btrfs_fiemap+0x49/0x80
[<0>] __x64_sys_ioctl+0x3e1/0xb50
[<0>] do_syscall_64+0x94/0x1a0
[<0>] entry_SYSCALL_64_after_hwframe+0x6e/0x76
I wrote an fstest to reproduce this deadlock without my replacement lock
and verified that the deadlock exists with our existing locking.
To fix this simply don't take the extent lock for the entire duration of
the fiemap. This is safe in general because we keep track of where we
are when we're searching the tree, so if an ordered extent updates in
the middle of our fiemap call we'll still emit the correct extents
because we know what offset we were on before.
The only place we maintain the lock is searching delalloc. Since the
delalloc stuff can change during writeback we want to lock the extent
range so we have a consistent view of delalloc at the time we're
checking to see if we need to set the delalloc flag.
With this patch applied we no longer deadlock with my testcase. |
In the Linux kernel, the following vulnerability has been resolved:
media: usbtv: Remove useless locks in usbtv_video_free()
Remove locks calls in usbtv_video_free() because
are useless and may led to a deadlock as reported here:
https://syzkaller.appspot.com/x/bisect.txt?x=166dc872180000
Also remove usbtv_stop() call since it will be called when
unregistering the device.
Before 'c838530d230b' this issue would only be noticed if you
disconnect while streaming and now it is noticeable even when
disconnecting while not streaming.
[hverkuil: fix minor spelling mistake in log message] |
In the Linux kernel, the following vulnerability has been resolved:
NFS: Fix nfs_netfs_issue_read() xarray locking for writeback interrupt
The loop inside nfs_netfs_issue_read() currently does not disable
interrupts while iterating through pages in the xarray to submit
for NFS read. This is not safe though since after taking xa_lock,
another page in the mapping could be processed for writeback inside
an interrupt, and deadlock can occur. The fix is simple and clean
if we use xa_for_each_range(), which handles the iteration with RCU
while reducing code complexity.
The problem is easily reproduced with the following test:
mount -o vers=3,fsc 127.0.0.1:/export /mnt/nfs
dd if=/dev/zero of=/mnt/nfs/file1.bin bs=4096 count=1
echo 3 > /proc/sys/vm/drop_caches
dd if=/mnt/nfs/file1.bin of=/dev/null
umount /mnt/nfs
On the console with a lockdep-enabled kernel a message similar to
the following will be seen:
================================
WARNING: inconsistent lock state
6.7.0-lockdbg+ #10 Not tainted
--------------------------------
inconsistent {IN-SOFTIRQ-W} -> {SOFTIRQ-ON-W} usage.
test5/1708 [HC0[0]:SC0[0]:HE1:SE1] takes:
ffff888127baa598 (&xa->xa_lock#4){+.?.}-{3:3}, at:
nfs_netfs_issue_read+0x1b2/0x4b0 [nfs]
{IN-SOFTIRQ-W} state was registered at:
lock_acquire+0x144/0x380
_raw_spin_lock_irqsave+0x4e/0xa0
__folio_end_writeback+0x17e/0x5c0
folio_end_writeback+0x93/0x1b0
iomap_finish_ioend+0xeb/0x6a0
blk_update_request+0x204/0x7f0
blk_mq_end_request+0x30/0x1c0
blk_complete_reqs+0x7e/0xa0
__do_softirq+0x113/0x544
__irq_exit_rcu+0xfe/0x120
irq_exit_rcu+0xe/0x20
sysvec_call_function_single+0x6f/0x90
asm_sysvec_call_function_single+0x1a/0x20
pv_native_safe_halt+0xf/0x20
default_idle+0x9/0x20
default_idle_call+0x67/0xa0
do_idle+0x2b5/0x300
cpu_startup_entry+0x34/0x40
start_secondary+0x19d/0x1c0
secondary_startup_64_no_verify+0x18f/0x19b
irq event stamp: 176891
hardirqs last enabled at (176891): [<ffffffffa67a0be4>]
_raw_spin_unlock_irqrestore+0x44/0x60
hardirqs last disabled at (176890): [<ffffffffa67a0899>]
_raw_spin_lock_irqsave+0x79/0xa0
softirqs last enabled at (176646): [<ffffffffa515d91e>]
__irq_exit_rcu+0xfe/0x120
softirqs last disabled at (176633): [<ffffffffa515d91e>]
__irq_exit_rcu+0xfe/0x120
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(&xa->xa_lock#4);
<Interrupt>
lock(&xa->xa_lock#4);
*** DEADLOCK ***
2 locks held by test5/1708:
#0: ffff888127baa498 (&sb->s_type->i_mutex_key#22){++++}-{4:4}, at:
nfs_start_io_read+0x28/0x90 [nfs]
#1: ffff888127baa650 (mapping.invalidate_lock#3){.+.+}-{4:4}, at:
page_cache_ra_unbounded+0xa4/0x280
stack backtrace:
CPU: 6 PID: 1708 Comm: test5 Kdump: loaded Not tainted 6.7.0-lockdbg+
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-1.fc39
04/01/2014
Call Trace:
dump_stack_lvl+0x5b/0x90
mark_lock+0xb3f/0xd20
__lock_acquire+0x77b/0x3360
_raw_spin_lock+0x34/0x80
nfs_netfs_issue_read+0x1b2/0x4b0 [nfs]
netfs_begin_read+0x77f/0x980 [netfs]
nfs_netfs_readahead+0x45/0x60 [nfs]
nfs_readahead+0x323/0x5a0 [nfs]
read_pages+0xf3/0x5c0
page_cache_ra_unbounded+0x1c8/0x280
filemap_get_pages+0x38c/0xae0
filemap_read+0x206/0x5e0
nfs_file_read+0xb7/0x140 [nfs]
vfs_read+0x2a9/0x460
ksys_read+0xb7/0x140 |