Search Results (4298 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2024-57989 1 Linux 1 Linux Kernel 2025-07-12 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: mt76: mt7925: fix NULL deref check in mt7925_change_vif_links In mt7925_change_vif_links() devm_kzalloc() may return NULL but this returned value is not checked.
CVE-2024-57932 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: gve: guard XDP xmit NDO on existence of xdp queues In GVE, dedicated XDP queues only exist when an XDP program is installed and the interface is up. As such, the NDO XDP XMIT callback should return early if either of these conditions are false. In the case of no loaded XDP program, priv->num_xdp_queues=0 which can cause a divide-by-zero error, and in the case of interface down, num_xdp_queues remains untouched to persist XDP queue count for the next interface up, but the TX pointer itself would be NULL. The XDP xmit callback also needs to synchronize with a device transitioning from open to close. This synchronization will happen via the GVE_PRIV_FLAGS_NAPI_ENABLED bit along with a synchronize_net() call, which waits for any RCU critical sections at call-time to complete.
CVE-2022-21546 1 Linux 1 Linux Kernel 2025-07-12 N/A
In the Linux kernel, the following vulnerability has been resolved: scsi: target: Fix WRITE_SAME No Data Buffer crash In newer version of the SBC specs, we have a NDOB bit that indicates there is no data buffer that gets written out. If this bit is set using commands like "sg_write_same --ndob" we will crash in target_core_iblock/file's execute_write_same handlers when we go to access the se_cmd->t_data_sg because its NULL. This patch adds a check for the NDOB bit in the common WRITE SAME code because we don't support it. And, it adds a check for zero SG elements in each handler in case the initiator tries to send a normal WRITE SAME with no data buffer.
CVE-2022-49544 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ipw2x00: Fix potential NULL dereference in libipw_xmit() crypt and crypt->ops could be null, so we need to checking null before dereference
CVE-2024-37820 1 Pingcap 1 Tidb 2025-07-12 5.4 Medium
A nil pointer dereference in PingCAP TiDB v8.2.0-alpha-216-gfe5858b allows attackers to crash the application via expression.inferCollation.
CVE-2024-38592 1 Linux 1 Linux Kernel 2025-07-12 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/mediatek: Init `ddp_comp` with devm_kcalloc() In the case where `conn_routes` is true we allocate an extra slot in the `ddp_comp` array but mtk_drm_crtc_create() never seemed to initialize it in the test case I ran. For me, this caused a later crash when we looped through the array in mtk_drm_crtc_mode_valid(). This showed up for me when I booted with `slub_debug=FZPUA` which poisons the memory initially. Without `slub_debug` I couldn't reproduce, presumably because the later code handles the value being NULL and in most cases (not guaranteed in all cases) the memory the allocator returned started out as 0. It really doesn't hurt to initialize the array with devm_kcalloc() since the array is small and the overhead of initting a handful of elements to 0 is small. In general initting memory to zero is a safer practice and usually it's suggested to only use the non-initting alloc functions if you really need to. Let's switch the function to use an allocation function that zeros the memory. For me, this avoids the crash.
CVE-2024-42329 1 Zabbix 1 Zabbix 2025-07-12 3.3 Low
The webdriver for the Browser object expects an error object to be initialized when the webdriver_session_query function fails. But this function can fail for various reasons without an error description and then the wd->error will be NULL and trying to read from it will result in a crash.
CVE-2024-39296 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bonding: fix oops during rmmod "rmmod bonding" causes an oops ever since commit cc317ea3d927 ("bonding: remove redundant NULL check in debugfs function"). Here are the relevant functions being called: bonding_exit() bond_destroy_debugfs() debugfs_remove_recursive(bonding_debug_root); bonding_debug_root = NULL; <--------- SET TO NULL HERE bond_netlink_fini() rtnl_link_unregister() __rtnl_link_unregister() unregister_netdevice_many_notify() bond_uninit() bond_debug_unregister() (commit removed check for bonding_debug_root == NULL) debugfs_remove() simple_recursive_removal() down_write() -> OOPS However, reverting the bad commit does not solve the problem completely because the original code contains a race that could cause the same oops, although it was much less likely to be triggered unintentionally: CPU1 rmmod bonding bonding_exit() bond_destroy_debugfs() debugfs_remove_recursive(bonding_debug_root); CPU2 echo -bond0 > /sys/class/net/bonding_masters bond_uninit() bond_debug_unregister() if (!bonding_debug_root) CPU1 bonding_debug_root = NULL; So do NOT revert the bad commit (since the removed checks were racy anyway), and instead change the order of actions taken during module removal. The same oops can also happen if there is an error during module init, so apply the same fix there.
CVE-2024-47496 1 Juniper Networks 1 Junos Os 2025-07-12 5.5 Medium
A NULL Pointer Dereference vulnerability in the Packet Forwarding Engine (pfe) of Juniper Networks Junos OS allows a local, low-privileged attacker to cause a Denial-of-Service (DoS). When a specific command is executed, the pfe crashes. This will cause traffic forwarding to be interrupted until the system self-recovers. Repeated execution will create a sustained DoS condition. This issue only affects MX Series devices with Line cards MPC1-MPC9. This issue affects: Junos OS on MX Series: * All versions before 21.4R3-S9, * from 22.2 before 22.2R3-S5,  * from 22.3 before 22.3R3-S4, * from 22.4 before 22.4R3-S2, * from 23.2 before 23.2R2-S1, * from 23.4 before 23.4R2.
CVE-2024-38622 1 Linux 1 Linux Kernel 2025-07-12 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/msm/dpu: Add callback function pointer check before its call In dpu_core_irq_callback_handler() callback function pointer is compared to NULL, but then callback function is unconditionally called by this pointer. Fix this bug by adding conditional return. Found by Linux Verification Center (linuxtesting.org) with SVACE. Patchwork: https://patchwork.freedesktop.org/patch/588237/
CVE-2022-48795 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: parisc: Fix data TLB miss in sba_unmap_sg Rolf Eike Beer reported the following bug: [1274934.746891] Bad Address (null pointer deref?): Code=15 (Data TLB miss fault) at addr 0000004140000018 [1274934.746891] CPU: 3 PID: 5549 Comm: cmake Not tainted 5.15.4-gentoo-parisc64 #4 [1274934.746891] Hardware name: 9000/785/C8000 [1274934.746891] [1274934.746891] YZrvWESTHLNXBCVMcbcbcbcbOGFRQPDI [1274934.746891] PSW: 00001000000001001111111000001110 Not tainted [1274934.746891] r00-03 000000ff0804fe0e 0000000040bc9bc0 00000000406760e4 0000004140000000 [1274934.746891] r04-07 0000000040b693c0 0000004140000000 000000004a2b08b0 0000000000000001 [1274934.746891] r08-11 0000000041f98810 0000000000000000 000000004a0a7000 0000000000000001 [1274934.746891] r12-15 0000000040bddbc0 0000000040c0cbc0 0000000040bddbc0 0000000040bddbc0 [1274934.746891] r16-19 0000000040bde3c0 0000000040bddbc0 0000000040bde3c0 0000000000000007 [1274934.746891] r20-23 0000000000000006 000000004a368950 0000000000000000 0000000000000001 [1274934.746891] r24-27 0000000000001fff 000000000800000e 000000004a1710f0 0000000040b693c0 [1274934.746891] r28-31 0000000000000001 0000000041f988b0 0000000041f98840 000000004a171118 [1274934.746891] sr00-03 00000000066e5800 0000000000000000 0000000000000000 00000000066e5800 [1274934.746891] sr04-07 0000000000000000 0000000000000000 0000000000000000 0000000000000000 [1274934.746891] [1274934.746891] IASQ: 0000000000000000 0000000000000000 IAOQ: 00000000406760e8 00000000406760ec [1274934.746891] IIR: 48780030 ISR: 0000000000000000 IOR: 0000004140000018 [1274934.746891] CPU: 3 CR30: 00000040e3a9c000 CR31: ffffffffffffffff [1274934.746891] ORIG_R28: 0000000040acdd58 [1274934.746891] IAOQ[0]: sba_unmap_sg+0xb0/0x118 [1274934.746891] IAOQ[1]: sba_unmap_sg+0xb4/0x118 [1274934.746891] RP(r2): sba_unmap_sg+0xac/0x118 [1274934.746891] Backtrace: [1274934.746891] [<00000000402740cc>] dma_unmap_sg_attrs+0x6c/0x70 [1274934.746891] [<000000004074d6bc>] scsi_dma_unmap+0x54/0x60 [1274934.746891] [<00000000407a3488>] mptscsih_io_done+0x150/0xd70 [1274934.746891] [<0000000040798600>] mpt_interrupt+0x168/0xa68 [1274934.746891] [<0000000040255a48>] __handle_irq_event_percpu+0xc8/0x278 [1274934.746891] [<0000000040255c34>] handle_irq_event_percpu+0x3c/0xd8 [1274934.746891] [<000000004025ecb4>] handle_percpu_irq+0xb4/0xf0 [1274934.746891] [<00000000402548e0>] generic_handle_irq+0x50/0x70 [1274934.746891] [<000000004019a254>] call_on_stack+0x18/0x24 [1274934.746891] [1274934.746891] Kernel panic - not syncing: Bad Address (null pointer deref?) The bug is caused by overrunning the sglist and incorrectly testing sg_dma_len(sglist) before nents. Normally this doesn't cause a crash, but in this case sglist crossed a page boundary. This occurs in the following code: while (sg_dma_len(sglist) && nents--) { The fix is simply to test nents first and move the decrement of nents into the loop.
CVE-2021-47407 1 Linux 1 Linux Kernel 2025-07-12 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Handle SRCU initialization failure during page track init Check the return of init_srcu_struct(), which can fail due to OOM, when initializing the page track mechanism. Lack of checking leads to a NULL pointer deref found by a modified syzkaller. [Move the call towards the beginning of kvm_arch_init_vm. - Paolo]
CVE-2024-47501 1 Juniper Networks 1 Junos Os 2025-07-12 5.5 Medium
A NULL Pointer Dereference vulnerability in the packet forwarding engine (pfe) of Juniper Networks Junos OS on MX304, MX with MPC10/11/LC9600, and EX9200 with EX9200-15C allows a locally authenticated attacker with low privileges to cause a Denial of Service (DoS). In a VPLS or Junos Fusion scenario, the execution of specific show commands will cause all FPCs hosting VPLS sessions or connecting to satellites to crash and restart. This issue affects Junos on MX304, MX with MPC10/11/LC9600 and EX9200 with EX9200-15C:  * All version before 21.2R3-S1, * 21.3 versions before 21.3R3,  * 21.4 versions before 21.4R2.
CVE-2024-0075 1 Nvidia 1 Gpu Display Driver 2025-07-12 6.1 Medium
NVIDIA GPU Display Driver for Windows and Linux contains a vulnerability where a user may cause a NULL-pointer dereference by accessing passed parameters the validity of which has not been checked. A successful exploit of this vulnerability may lead to denial of service and limited information disclosure.
CVE-2024-6157 1 Abb 1 Robotware 2025-07-12 5.1 Medium
An attacker who successfully exploited these vulnerabilities could cause the robot to stop. A vulnerability exists in the PROFINET stack included in the RobotWare versions listed below.  This vulnerability arises under specific condition when specially crafted message is processed by the system. Below are reported vulnerabilities in the Robot Ware versions. * IRC5- RobotWare 6 < 6.15.06 except 6.10.10, and 6.13.07
CVE-2024-57988 1 Linux 1 Linux Kernel 2025-07-12 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: btbcm: Fix NULL deref in btbcm_get_board_name() devm_kstrdup() can return a NULL pointer on failure,but this returned value in btbcm_get_board_name() is not checked. Add NULL check in btbcm_get_board_name(), to handle kernel NULL pointer dereference error.
CVE-2022-49532 1 Linux 1 Linux Kernel 2025-07-12 4.1 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/virtio: fix NULL pointer dereference in virtio_gpu_conn_get_modes drm_cvt_mode may return NULL and we should check it. This bug is found by syzkaller: FAULT_INJECTION stacktrace: [ 168.567394] FAULT_INJECTION: forcing a failure. name failslab, interval 1, probability 0, space 0, times 1 [ 168.567403] CPU: 1 PID: 6425 Comm: syz Kdump: loaded Not tainted 4.19.90-vhulk2201.1.0.h1035.kasan.eulerosv2r10.aarch64 #1 [ 168.567406] Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 [ 168.567408] Call trace: [ 168.567414] dump_backtrace+0x0/0x310 [ 168.567418] show_stack+0x28/0x38 [ 168.567423] dump_stack+0xec/0x15c [ 168.567427] should_fail+0x3ac/0x3d0 [ 168.567437] __should_failslab+0xb8/0x120 [ 168.567441] should_failslab+0x28/0xc0 [ 168.567445] kmem_cache_alloc_trace+0x50/0x640 [ 168.567454] drm_mode_create+0x40/0x90 [ 168.567458] drm_cvt_mode+0x48/0xc78 [ 168.567477] virtio_gpu_conn_get_modes+0xa8/0x140 [virtio_gpu] [ 168.567485] drm_helper_probe_single_connector_modes+0x3a4/0xd80 [ 168.567492] drm_mode_getconnector+0x2e0/0xa70 [ 168.567496] drm_ioctl_kernel+0x11c/0x1d8 [ 168.567514] drm_ioctl+0x558/0x6d0 [ 168.567522] do_vfs_ioctl+0x160/0xf30 [ 168.567525] ksys_ioctl+0x98/0xd8 [ 168.567530] __arm64_sys_ioctl+0x50/0xc8 [ 168.567536] el0_svc_common+0xc8/0x320 [ 168.567540] el0_svc_handler+0xf8/0x160 [ 168.567544] el0_svc+0x10/0x218 KASAN stacktrace: [ 168.567561] BUG: KASAN: null-ptr-deref in virtio_gpu_conn_get_modes+0xb4/0x140 [virtio_gpu] [ 168.567565] Read of size 4 at addr 0000000000000054 by task syz/6425 [ 168.567566] [ 168.567571] CPU: 1 PID: 6425 Comm: syz Kdump: loaded Not tainted 4.19.90-vhulk2201.1.0.h1035.kasan.eulerosv2r10.aarch64 #1 [ 168.567573] Hardware name: QEMU KVM Virtual Machine, BIOS 0.0.0 02/06/2015 [ 168.567575] Call trace: [ 168.567578] dump_backtrace+0x0/0x310 [ 168.567582] show_stack+0x28/0x38 [ 168.567586] dump_stack+0xec/0x15c [ 168.567591] kasan_report+0x244/0x2f0 [ 168.567594] __asan_load4+0x58/0xb0 [ 168.567607] virtio_gpu_conn_get_modes+0xb4/0x140 [virtio_gpu] [ 168.567612] drm_helper_probe_single_connector_modes+0x3a4/0xd80 [ 168.567617] drm_mode_getconnector+0x2e0/0xa70 [ 168.567621] drm_ioctl_kernel+0x11c/0x1d8 [ 168.567624] drm_ioctl+0x558/0x6d0 [ 168.567628] do_vfs_ioctl+0x160/0xf30 [ 168.567632] ksys_ioctl+0x98/0xd8 [ 168.567636] __arm64_sys_ioctl+0x50/0xc8 [ 168.567641] el0_svc_common+0xc8/0x320 [ 168.567645] el0_svc_handler+0xf8/0x160 [ 168.567649] el0_svc+0x10/0x218
CVE-2023-52866 1 Linux 1 Linux 2025-07-12 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: HID: uclogic: Fix user-memory-access bug in uclogic_params_ugee_v2_init_event_hooks() When CONFIG_HID_UCLOGIC=y and CONFIG_KUNIT_ALL_TESTS=y, launch kernel and then the below user-memory-access bug occurs. In hid_test_uclogic_params_cleanup_event_hooks(),it call uclogic_params_ugee_v2_init_event_hooks() with the first arg=NULL, so when it calls uclogic_params_ugee_v2_has_battery(), the hid_get_drvdata() will access hdev->dev with hdev=NULL, which will cause below user-memory-access. So add a fake_device with quirks member and call hid_set_drvdata() to assign hdev->dev->driver_data which avoids the null-ptr-def bug for drvdata->quirks in uclogic_params_ugee_v2_has_battery(). After applying this patch, the below user-memory-access bug never occurs. general protection fault, probably for non-canonical address 0xdffffc0000000329: 0000 [#1] PREEMPT SMP KASAN KASAN: probably user-memory-access in range [0x0000000000001948-0x000000000000194f] CPU: 5 PID: 2189 Comm: kunit_try_catch Tainted: G B W N 6.6.0-rc2+ #30 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:uclogic_params_ugee_v2_init_event_hooks+0x87/0x600 Code: f3 f3 65 48 8b 14 25 28 00 00 00 48 89 54 24 60 31 d2 48 89 fa c7 44 24 30 00 00 00 00 48 c7 44 24 28 02 f8 02 01 48 c1 ea 03 <80> 3c 02 00 0f 85 2c 04 00 00 48 8b 9d 48 19 00 00 48 b8 00 00 00 RSP: 0000:ffff88810679fc88 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 0000000000000004 RCX: 0000000000000000 RDX: 0000000000000329 RSI: ffff88810679fd88 RDI: 0000000000001948 RBP: 0000000000000000 R08: 0000000000000000 R09: ffffed1020f639f0 R10: ffff888107b1cf87 R11: 0000000000000400 R12: 1ffff11020cf3f92 R13: ffff88810679fd88 R14: ffff888100b97b08 R15: ffff8881030bb080 FS: 0000000000000000(0000) GS:ffff888119e80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000005286001 CR4: 0000000000770ee0 DR0: ffffffff8fdd6cf4 DR1: ffffffff8fdd6cf5 DR2: ffffffff8fdd6cf6 DR3: ffffffff8fdd6cf7 DR6: 00000000fffe0ff0 DR7: 0000000000000600 PKRU: 55555554 Call Trace: <TASK> ? die_addr+0x3d/0xa0 ? exc_general_protection+0x144/0x220 ? asm_exc_general_protection+0x22/0x30 ? uclogic_params_ugee_v2_init_event_hooks+0x87/0x600 ? sched_clock_cpu+0x69/0x550 ? uclogic_parse_ugee_v2_desc_gen_params+0x70/0x70 ? load_balance+0x2950/0x2950 ? rcu_trc_cmpxchg_need_qs+0x67/0xa0 hid_test_uclogic_params_cleanup_event_hooks+0x9e/0x1a0 ? uclogic_params_ugee_v2_init_event_hooks+0x600/0x600 ? __switch_to+0x5cf/0xe60 ? migrate_enable+0x260/0x260 ? __kthread_parkme+0x83/0x150 ? kunit_try_run_case_cleanup+0xe0/0xe0 kunit_generic_run_threadfn_adapter+0x4a/0x90 ? kunit_try_catch_throw+0x80/0x80 kthread+0x2b5/0x380 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork+0x2d/0x70 ? kthread_complete_and_exit+0x20/0x20 ret_from_fork_asm+0x11/0x20 </TASK> Modules linked in: Dumping ftrace buffer: (ftrace buffer empty) ---[ end trace 0000000000000000 ]--- RIP: 0010:uclogic_params_ugee_v2_init_event_hooks+0x87/0x600 Code: f3 f3 65 48 8b 14 25 28 00 00 00 48 89 54 24 60 31 d2 48 89 fa c7 44 24 30 00 00 00 00 48 c7 44 24 28 02 f8 02 01 48 c1 ea 03 <80> 3c 02 00 0f 85 2c 04 00 00 48 8b 9d 48 19 00 00 48 b8 00 00 00 RSP: 0000:ffff88810679fc88 EFLAGS: 00010202 RAX: dffffc0000000000 RBX: 0000000000000004 RCX: 0000000000000000 RDX: 0000000000000329 RSI: ffff88810679fd88 RDI: 0000000000001948 RBP: 0000000000000000 R08: 0000000000000000 R09: ffffed1020f639f0 R10: ffff888107b1cf87 R11: 0000000000000400 R12: 1ffff11020cf3f92 R13: ffff88810679fd88 R14: ffff888100b97b08 R15: ffff8881030bb080 FS: 0000000000000000(0000) GS:ffff888119e80000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000005286001 CR4: 0000000000770ee0 DR0: ffffffff8fdd6cf4 DR1: ---truncated---
CVE-2024-42100 1 Linux 1 Linux Kernel 2025-07-12 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: clk: sunxi-ng: common: Don't call hw_to_ccu_common on hw without common In order to set the rate range of a hw sunxi_ccu_probe calls hw_to_ccu_common() assuming all entries in desc->ccu_clks are contained in a ccu_common struct. This assumption is incorrect and, in consequence, causes invalid pointer de-references. Remove the faulty call. Instead, add one more loop that iterates over the ccu_clks and sets the rate range, if required.
CVE-2021-47507 1 Linux 1 Linux Kernel 2025-07-12 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: nfsd: Fix nsfd startup race (again) Commit bd5ae9288d64 ("nfsd: register pernet ops last, unregister first") has re-opened rpc_pipefs_event() race against nfsd_net_id registration (register_pernet_subsys()) which has been fixed by commit bb7ffbf29e76 ("nfsd: fix nsfd startup race triggering BUG_ON"). Restore the order of register_pernet_subsys() vs register_cld_notifier(). Add WARN_ON() to prevent a future regression. Crash info: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000012 CPU: 8 PID: 345 Comm: mount Not tainted 5.4.144-... #1 pc : rpc_pipefs_event+0x54/0x120 [nfsd] lr : rpc_pipefs_event+0x48/0x120 [nfsd] Call trace: rpc_pipefs_event+0x54/0x120 [nfsd] blocking_notifier_call_chain rpc_fill_super get_tree_keyed rpc_fs_get_tree vfs_get_tree do_mount ksys_mount __arm64_sys_mount el0_svc_handler el0_svc