Search Results (71819 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-49761 1 Linux 1 Linux Kernel 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: btrfs: always report error in run_one_delayed_ref() Currently we have a btrfs_debug() for run_one_delayed_ref() failure, but if end users hit such problem, there will be no chance that btrfs_debug() is enabled. This can lead to very little useful info for debugging. This patch will: - Add extra info for error reporting Including: * logical bytenr * num_bytes * type * action * ref_mod - Replace the btrfs_debug() with btrfs_err() - Move the error reporting into run_one_delayed_ref() This is to avoid use-after-free, the @node can be freed in the caller. This error should only be triggered at most once. As if run_one_delayed_ref() failed, we trigger the error message, then causing the call chain to error out: btrfs_run_delayed_refs() `- btrfs_run_delayed_refs() `- btrfs_run_delayed_refs_for_head() `- run_one_delayed_ref() And we will abort the current transaction in btrfs_run_delayed_refs(). If we have to run delayed refs for the abort transaction, run_one_delayed_ref() will just cleanup the refs and do nothing, thus no new error messages would be output.
CVE-2022-49740 1 Linux 1 Linux Kernel 2025-12-23 7.1 High
In the Linux kernel, the following vulnerability has been resolved: wifi: brcmfmac: Check the count value of channel spec to prevent out-of-bounds reads This patch fixes slab-out-of-bounds reads in brcmfmac that occur in brcmf_construct_chaninfo() and brcmf_enable_bw40_2g() when the count value of channel specifications provided by the device is greater than the length of 'list->element[]', decided by the size of the 'list' allocated with kzalloc(). The patch adds checks that make the functions free the buffer and return -EINVAL if that is the case. Note that the negative return is handled by the caller, brcmf_setup_wiphybands() or brcmf_cfg80211_attach(). Found by a modified version of syzkaller. Crash Report from brcmf_construct_chaninfo(): ================================================================== BUG: KASAN: slab-out-of-bounds in brcmf_setup_wiphybands+0x1238/0x1430 Read of size 4 at addr ffff888115f24600 by task kworker/0:2/1896 CPU: 0 PID: 1896 Comm: kworker/0:2 Tainted: G W O 5.14.0+ #132 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.1-0-ga5cab58e9a3f-prebuilt.qemu.org 04/01/2014 Workqueue: usb_hub_wq hub_event Call Trace: dump_stack_lvl+0x57/0x7d print_address_description.constprop.0.cold+0x93/0x334 kasan_report.cold+0x83/0xdf brcmf_setup_wiphybands+0x1238/0x1430 brcmf_cfg80211_attach+0x2118/0x3fd0 brcmf_attach+0x389/0xd40 brcmf_usb_probe+0x12de/0x1690 usb_probe_interface+0x25f/0x710 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 bus_for_each_drv+0x123/0x1a0 __device_attach+0x207/0x330 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 usb_set_configuration+0x984/0x1770 usb_generic_driver_probe+0x69/0x90 usb_probe_device+0x9c/0x220 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 bus_for_each_drv+0x123/0x1a0 __device_attach+0x207/0x330 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 usb_new_device.cold+0x463/0xf66 hub_event+0x10d5/0x3330 process_one_work+0x873/0x13e0 worker_thread+0x8b/0xd10 kthread+0x379/0x450 ret_from_fork+0x1f/0x30 Allocated by task 1896: kasan_save_stack+0x1b/0x40 __kasan_kmalloc+0x7c/0x90 kmem_cache_alloc_trace+0x19e/0x330 brcmf_setup_wiphybands+0x290/0x1430 brcmf_cfg80211_attach+0x2118/0x3fd0 brcmf_attach+0x389/0xd40 brcmf_usb_probe+0x12de/0x1690 usb_probe_interface+0x25f/0x710 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 bus_for_each_drv+0x123/0x1a0 __device_attach+0x207/0x330 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 usb_set_configuration+0x984/0x1770 usb_generic_driver_probe+0x69/0x90 usb_probe_device+0x9c/0x220 really_probe+0x1be/0xa90 __driver_probe_device+0x2ab/0x460 driver_probe_device+0x49/0x120 __device_attach_driver+0x18a/0x250 bus_for_each_drv+0x123/0x1a0 __device_attach+0x207/0x330 bus_probe_device+0x1a2/0x260 device_add+0xa61/0x1ce0 usb_new_device.cold+0x463/0xf66 hub_event+0x10d5/0x3330 process_one_work+0x873/0x13e0 worker_thread+0x8b/0xd10 kthread+0x379/0x450 ret_from_fork+0x1f/0x30 The buggy address belongs to the object at ffff888115f24000 which belongs to the cache kmalloc-2k of size 2048 The buggy address is located 1536 bytes inside of 2048-byte region [ffff888115f24000, ffff888115f24800) Memory state around the buggy address: ffff888115f24500: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ffff888115f24580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 >ffff888115f24600: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ^ ffff888115f24680: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff888115f24700: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ================================================================== Crash Report from brcmf_enable_bw40_2g(): ========== ---truncated---
CVE-2022-49674 1 Linux 1 Linux Kernel 2025-12-23 7.1 High
In the Linux kernel, the following vulnerability has been resolved: dm raid: fix accesses beyond end of raid member array On dm-raid table load (using raid_ctr), dm-raid allocates an array rs->devs[rs->raid_disks] for the raid device members. rs->raid_disks is defined by the number of raid metadata and image tupples passed into the target's constructor. In the case of RAID layout changes being requested, that number can be different from the current number of members for existing raid sets as defined in their superblocks. Example RAID layout changes include: - raid1 legs being added/removed - raid4/5/6/10 number of stripes changed (stripe reshaping) - takeover to higher raid level (e.g. raid5 -> raid6) When accessing array members, rs->raid_disks must be used in control loops instead of the potentially larger value in rs->md.raid_disks. Otherwise it will cause memory access beyond the end of the rs->devs array. Fix this by changing code that is prone to out-of-bounds access. Also fix validate_raid_redundancy() to validate all devices that are added. Also, use braces to help clean up raid_iterate_devices(). The out-of-bounds memory accesses was discovered using KASAN. This commit was verified to pass all LVM2 RAID tests (with KASAN enabled).
CVE-2022-49651 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: srcu: Tighten cleanup_srcu_struct() GP checks Currently, cleanup_srcu_struct() checks for a grace period in progress, but it does not check for a grace period that has not yet started but which might start at any time. Such a situation could result in a use-after-free bug, so this commit adds a check for a grace period that is needed but not yet started to cleanup_srcu_struct().
CVE-2022-49623 1 Linux 1 Linux Kernel 2025-12-23 7.1 High
In the Linux kernel, the following vulnerability has been resolved: powerpc/xive/spapr: correct bitmap allocation size kasan detects access beyond the end of the xibm->bitmap allocation: BUG: KASAN: slab-out-of-bounds in _find_first_zero_bit+0x40/0x140 Read of size 8 at addr c00000001d1d0118 by task swapper/0/1 CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.19.0-rc2-00001-g90df023b36dd #28 Call Trace: [c00000001d98f770] [c0000000012baab8] dump_stack_lvl+0xac/0x108 (unreliable) [c00000001d98f7b0] [c00000000068faac] print_report+0x37c/0x710 [c00000001d98f880] [c0000000006902c0] kasan_report+0x110/0x354 [c00000001d98f950] [c000000000692324] __asan_load8+0xa4/0xe0 [c00000001d98f970] [c0000000011c6ed0] _find_first_zero_bit+0x40/0x140 [c00000001d98f9b0] [c0000000000dbfbc] xive_spapr_get_ipi+0xcc/0x260 [c00000001d98fa70] [c0000000000d6d28] xive_setup_cpu_ipi+0x1e8/0x450 [c00000001d98fb30] [c000000004032a20] pSeries_smp_probe+0x5c/0x118 [c00000001d98fb60] [c000000004018b44] smp_prepare_cpus+0x944/0x9ac [c00000001d98fc90] [c000000004009f9c] kernel_init_freeable+0x2d4/0x640 [c00000001d98fd90] [c0000000000131e8] kernel_init+0x28/0x1d0 [c00000001d98fe10] [c00000000000cd54] ret_from_kernel_thread+0x5c/0x64 Allocated by task 0: kasan_save_stack+0x34/0x70 __kasan_kmalloc+0xb4/0xf0 __kmalloc+0x268/0x540 xive_spapr_init+0x4d0/0x77c pseries_init_irq+0x40/0x27c init_IRQ+0x44/0x84 start_kernel+0x2a4/0x538 start_here_common+0x1c/0x20 The buggy address belongs to the object at c00000001d1d0118 which belongs to the cache kmalloc-8 of size 8 The buggy address is located 0 bytes inside of 8-byte region [c00000001d1d0118, c00000001d1d0120) The buggy address belongs to the physical page: page:c00c000000074740 refcount:1 mapcount:0 mapping:0000000000000000 index:0xc00000001d1d0558 pfn:0x1d1d flags: 0x7ffff000000200(slab|node=0|zone=0|lastcpupid=0x7ffff) raw: 007ffff000000200 c00000001d0003c8 c00000001d0003c8 c00000001d010480 raw: c00000001d1d0558 0000000001e1000a 00000001ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: c00000001d1d0000: fc 00 fc fc fc fc fc fc fc fc fc fc fc fc fc fc c00000001d1d0080: fc fc 00 fc fc fc fc fc fc fc fc fc fc fc fc fc >c00000001d1d0100: fc fc fc 02 fc fc fc fc fc fc fc fc fc fc fc fc ^ c00000001d1d0180: fc fc fc fc 04 fc fc fc fc fc fc fc fc fc fc fc c00000001d1d0200: fc fc fc fc fc 04 fc fc fc fc fc fc fc fc fc fc This happens because the allocation uses the wrong unit (bits) when it should pass (BITS_TO_LONGS(count) * sizeof(long)) or equivalent. With small numbers of bits, the allocated object can be smaller than sizeof(long), which results in invalid accesses. Use bitmap_zalloc() to allocate and initialize the irq bitmap, paired with bitmap_free() for consistency.
CVE-2022-49622 1 Linux 1 Linux Kernel 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: avoid skb access on nf_stolen When verdict is NF_STOLEN, the skb might have been freed. When tracing is enabled, this can result in a use-after-free: 1. access to skb->nf_trace 2. access to skb->mark 3. computation of trace id 4. dump of packet payload To avoid 1, keep a cached copy of skb->nf_trace in the trace state struct. Refresh this copy whenever verdict is != STOLEN. Avoid 2 by skipping skb->mark access if verdict is STOLEN. 3 is avoided by precomputing the trace id. Only dump the packet when verdict is not "STOLEN".
CVE-2022-49541 2 Linux, Redhat 4 Linux Kernel, Enterprise Linux, Rhel E4s and 1 more 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: cifs: fix potential double free during failed mount RHBZ: https://bugzilla.redhat.com/show_bug.cgi?id=2088799
CVE-2022-49535 1 Linux 1 Linux Kernel 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: scsi: lpfc: Fix null pointer dereference after failing to issue FLOGI and PLOGI If lpfc_issue_els_flogi() fails and returns non-zero status, the node reference count is decremented to trigger the release of the nodelist structure. However, if there is a prior registration or dev-loss-evt work pending, the node may be released prematurely. When dev-loss-evt completes, the released node is referenced causing a use-after-free null pointer dereference. Similarly, when processing non-zero ELS PLOGI completion status in lpfc_cmpl_els_plogi(), the ndlp flags are checked for a transport registration before triggering node removal. If dev-loss-evt work is pending, the node may be released prematurely and a subsequent call to lpfc_dev_loss_tmo_handler() results in a use after free ndlp dereference. Add test for pending dev-loss before decrementing the node reference count for FLOGI, PLOGI, PRLI, and ADISC handling.
CVE-2022-49530 1 Linux 1 Linux Kernel 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: drm/amd/pm: fix double free in si_parse_power_table() In function si_parse_power_table(), array adev->pm.dpm.ps and its member is allocated. If the allocation of each member fails, the array itself is freed and returned with an error code. However, the array is later freed again in si_dpm_fini() function which is called when the function returns an error. This leads to potential double free of the array adev->pm.dpm.ps, as well as leak of its array members, since the members are not freed in the allocation function and the array is not nulled when freed. In addition adev->pm.dpm.num_ps, which keeps track of the allocated array member, is not updated until the member allocation is successfully finished, this could also lead to either use after free, or uninitialized variable access in si_dpm_fini(). Fix this by postponing the free of the array until si_dpm_fini() and increment adev->pm.dpm.num_ps everytime the array member is allocated.
CVE-2022-49524 1 Linux 1 Linux Kernel 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: media: pci: cx23885: Fix the error handling in cx23885_initdev() When the driver fails to call the dma_set_mask(), the driver will get the following splat: [ 55.853884] BUG: KASAN: use-after-free in __process_removed_driver+0x3c/0x240 [ 55.854486] Read of size 8 at addr ffff88810de60408 by task modprobe/590 [ 55.856822] Call Trace: [ 55.860327] __process_removed_driver+0x3c/0x240 [ 55.861347] bus_for_each_dev+0x102/0x160 [ 55.861681] i2c_del_driver+0x2f/0x50 This is because the driver has initialized the i2c related resources in cx23885_dev_setup() but not released them in error handling, fix this bug by modifying the error path that jumps after failing to call the dma_set_mask().
CVE-2022-49349 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ext4: fix use-after-free in ext4_rename_dir_prepare We got issue as follows: EXT4-fs (loop0): mounted filesystem without journal. Opts: ,errors=continue ext4_get_first_dir_block: bh->b_data=0xffff88810bee6000 len=34478 ext4_get_first_dir_block: *parent_de=0xffff88810beee6ae bh->b_data=0xffff88810bee6000 ext4_rename_dir_prepare: [1] parent_de=0xffff88810beee6ae ================================================================== BUG: KASAN: use-after-free in ext4_rename_dir_prepare+0x152/0x220 Read of size 4 at addr ffff88810beee6ae by task rep/1895 CPU: 13 PID: 1895 Comm: rep Not tainted 5.10.0+ #241 Call Trace: dump_stack+0xbe/0xf9 print_address_description.constprop.0+0x1e/0x220 kasan_report.cold+0x37/0x7f ext4_rename_dir_prepare+0x152/0x220 ext4_rename+0xf44/0x1ad0 ext4_rename2+0x11c/0x170 vfs_rename+0xa84/0x1440 do_renameat2+0x683/0x8f0 __x64_sys_renameat+0x53/0x60 do_syscall_64+0x33/0x40 entry_SYSCALL_64_after_hwframe+0x44/0xa9 RIP: 0033:0x7f45a6fc41c9 RSP: 002b:00007ffc5a470218 EFLAGS: 00000246 ORIG_RAX: 0000000000000108 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f45a6fc41c9 RDX: 0000000000000005 RSI: 0000000020000180 RDI: 0000000000000005 RBP: 00007ffc5a470240 R08: 00007ffc5a470160 R09: 0000000020000080 R10: 00000000200001c0 R11: 0000000000000246 R12: 0000000000400bb0 R13: 00007ffc5a470320 R14: 0000000000000000 R15: 0000000000000000 The buggy address belongs to the page: page:00000000440015ce refcount:0 mapcount:0 mapping:0000000000000000 index:0x1 pfn:0x10beee flags: 0x200000000000000() raw: 0200000000000000 ffffea00043ff4c8 ffffea0004325608 0000000000000000 raw: 0000000000000001 0000000000000000 00000000ffffffff 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff88810beee580: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff88810beee600: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff >ffff88810beee680: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ^ ffff88810beee700: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ffff88810beee780: ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ================================================================== Disabling lock debugging due to kernel taint ext4_rename_dir_prepare: [2] parent_de->inode=3537895424 ext4_rename_dir_prepare: [3] dir=0xffff888124170140 ext4_rename_dir_prepare: [4] ino=2 ext4_rename_dir_prepare: ent->dir->i_ino=2 parent=-757071872 Reason is first directory entry which 'rec_len' is 34478, then will get illegal parent entry. Now, we do not check directory entry after read directory block in 'ext4_get_first_dir_block'. To solve this issue, check directory entry in 'ext4_get_first_dir_block'. [ Trigger an ext4_error() instead of just warning if the directory is missing a '.' or '..' entry. Also make sure we return an error code if the file system is corrupted. -TYT ]
CVE-2022-49292 1 Linux 1 Linux Kernel 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ALSA: oss: Fix PCM OSS buffer allocation overflow We've got syzbot reports hitting INT_MAX overflow at vmalloc() allocation that is called from snd_pcm_plug_alloc(). Although we apply the restrictions to input parameters, it's based only on the hw_params of the underlying PCM device. Since the PCM OSS layer allocates a temporary buffer for the data conversion, the size may become unexpectedly large when more channels or higher rates is given; in the reported case, it went over INT_MAX, hence it hits WARN_ON(). This patch is an attempt to avoid such an overflow and an allocation for too large buffers. First off, it adds the limit of 1MB as the upper bound for period bytes. This must be large enough for all use cases, and we really don't want to handle a larger temporary buffer than this size. The size check is performed at two places, where the original period bytes is calculated and where the plugin buffer size is calculated. In addition, the driver uses array_size() and array3_size() for multiplications to catch overflows for the converted period size and buffer bytes.
CVE-2022-49291 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ALSA: pcm: Fix races among concurrent hw_params and hw_free calls Currently we have neither proper check nor protection against the concurrent calls of PCM hw_params and hw_free ioctls, which may result in a UAF. Since the existing PCM stream lock can't be used for protecting the whole ioctl operations, we need a new mutex to protect those racy calls. This patch introduced a new mutex, runtime->buffer_mutex, and applies it to both hw_params and hw_free ioctl code paths. Along with it, the both functions are slightly modified (the mmap_count check is moved into the state-check block) for code simplicity.
CVE-2022-49288 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ALSA: pcm: Fix races among concurrent prealloc proc writes We have no protection against concurrent PCM buffer preallocation changes via proc files, and it may potentially lead to UAF or some weird problem. This patch applies the PCM open_mutex to the proc write operation for avoiding the racy proc writes and the PCM stream open (and further operations).
CVE-2022-49267 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: mmc: core: use sysfs_emit() instead of sprintf() sprintf() (still used in the MMC core for the sysfs output) is vulnerable to the buffer overflow. Use the new-fangled sysfs_emit() instead. Found by Linux Verification Center (linuxtesting.org) with the SVACE static analysis tool.
CVE-2022-49172 1 Linux 1 Linux Kernel 2025-12-23 7.1 High
In the Linux kernel, the following vulnerability has been resolved: parisc: Fix non-access data TLB cache flush faults When a page is not present, we get non-access data TLB faults from the fdc and fic instructions in flush_user_dcache_range_asm and flush_user_icache_range_asm. When these occur, the cache line is not invalidated and potentially we get memory corruption. The problem was hidden by the nullification of the flush instructions. These faults also affect performance. With pa8800/pa8900 processors, there will be 32 faults per 4 KB page since the cache line is 128 bytes. There will be more faults with earlier processors. The problem is fixed by using flush_cache_pages(). It does the flush using a tmp alias mapping. The flush_cache_pages() call in flush_cache_range() flushed too large a range. V2: Remove unnecessary preempt_disable() and preempt_enable() calls.
CVE-2022-49168 1 Linux 1 Linux Kernel 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: btrfs: do not clean up repair bio if submit fails The submit helper will always run bio_endio() on the bio if it fails to submit, so cleaning up the bio just leads to a variety of use-after-free and NULL pointer dereference bugs because we race with the endio function that is cleaning up the bio. Instead just return BLK_STS_OK as the repair function has to continue to process the rest of the pages, and the endio for the repair bio will do the appropriate cleanup for the page that it was given.
CVE-2022-49111 2 Linux, Redhat 5 Linux Kernel, Enterprise Linux, Rhel Aus and 2 more 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: Fix use after free in hci_send_acl This fixes the following trace caused by receiving HCI_EV_DISCONN_PHY_LINK_COMPLETE which does call hci_conn_del without first checking if conn->type is in fact AMP_LINK and in case it is do properly cleanup upper layers with hci_disconn_cfm: ================================================================== BUG: KASAN: use-after-free in hci_send_acl+0xaba/0xc50 Read of size 8 at addr ffff88800e404818 by task bluetoothd/142 CPU: 0 PID: 142 Comm: bluetoothd Not tainted 5.17.0-rc5-00006-gda4022eeac1a #7 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x45/0x59 print_address_description.constprop.0+0x1f/0x150 kasan_report.cold+0x7f/0x11b hci_send_acl+0xaba/0xc50 l2cap_do_send+0x23f/0x3d0 l2cap_chan_send+0xc06/0x2cc0 l2cap_sock_sendmsg+0x201/0x2b0 sock_sendmsg+0xdc/0x110 sock_write_iter+0x20f/0x370 do_iter_readv_writev+0x343/0x690 do_iter_write+0x132/0x640 vfs_writev+0x198/0x570 do_writev+0x202/0x280 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x44/0xae RSP: 002b:00007ffce8a099b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000014 Code: 0f 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 14 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 89 54 24 1c 48 89 74 24 10 RDX: 0000000000000001 RSI: 00007ffce8a099e0 RDI: 0000000000000015 RAX: ffffffffffffffda RBX: 00007ffce8a099e0 RCX: 00007f788fc3cf77 R10: 00007ffce8af7080 R11: 0000000000000246 R12: 000055e4ccf75580 RBP: 0000000000000015 R08: 0000000000000002 R09: 0000000000000001 </TASK> R13: 000055e4ccf754a0 R14: 000055e4ccf75cd0 R15: 000055e4ccf4a6b0 Allocated by task 45: kasan_save_stack+0x1e/0x40 __kasan_kmalloc+0x81/0xa0 hci_chan_create+0x9a/0x2f0 l2cap_conn_add.part.0+0x1a/0xdc0 l2cap_connect_cfm+0x236/0x1000 le_conn_complete_evt+0x15a7/0x1db0 hci_le_conn_complete_evt+0x226/0x2c0 hci_le_meta_evt+0x247/0x450 hci_event_packet+0x61b/0xe90 hci_rx_work+0x4d5/0xc50 process_one_work+0x8fb/0x15a0 worker_thread+0x576/0x1240 kthread+0x29d/0x340 ret_from_fork+0x1f/0x30 Freed by task 45: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_set_free_info+0x20/0x30 __kasan_slab_free+0xfb/0x130 kfree+0xac/0x350 hci_conn_cleanup+0x101/0x6a0 hci_conn_del+0x27e/0x6c0 hci_disconn_phylink_complete_evt+0xe0/0x120 hci_event_packet+0x812/0xe90 hci_rx_work+0x4d5/0xc50 process_one_work+0x8fb/0x15a0 worker_thread+0x576/0x1240 kthread+0x29d/0x340 ret_from_fork+0x1f/0x30 The buggy address belongs to the object at ffff88800c0f0500 The buggy address is located 24 bytes inside of which belongs to the cache kmalloc-128 of size 128 The buggy address belongs to the page: 128-byte region [ffff88800c0f0500, ffff88800c0f0580) flags: 0x100000000000200(slab|node=0|zone=1) page:00000000fe45cd86 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0xc0f0 raw: 0000000000000000 0000000080100010 00000001ffffffff 0000000000000000 raw: 0100000000000200 ffffea00003a2c80 dead000000000004 ffff8880078418c0 page dumped because: kasan: bad access detected ffff88800c0f0400: 00 00 00 00 00 00 00 00 00 00 00 00 00 fc fc fc Memory state around the buggy address: >ffff88800c0f0500: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff88800c0f0480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff88800c0f0580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ---truncated---
CVE-2022-48951 1 Linux 1 Linux Kernel 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: ASoC: ops: Check bounds for second channel in snd_soc_put_volsw_sx() The bounds checks in snd_soc_put_volsw_sx() are only being applied to the first channel, meaning it is possible to write out of bounds values to the second channel in stereo controls. Add appropriate checks.
CVE-2022-48950 1 Linux 1 Linux Kernel 2025-12-23 7.8 High
In the Linux kernel, the following vulnerability has been resolved: perf: Fix perf_pending_task() UaF Per syzbot it is possible for perf_pending_task() to run after the event is free()'d. There are two related but distinct cases: - the task_work was already queued before destroying the event; - destroying the event itself queues the task_work. The first cannot be solved using task_work_cancel() since perf_release() itself might be called from a task_work (____fput), which means the current->task_works list is already empty and task_work_cancel() won't be able to find the perf_pending_task() entry. The simplest alternative is extending the perf_event lifetime to cover the task_work. The second is just silly, queueing a task_work while you know the event is going away makes no sense and is easily avoided by re-arranging how the event is marked STATE_DEAD and ensuring it goes through STATE_OFF on the way down.