CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer (nvlddmkm.sys), where a NULL pointer dereference in the kernel, created within user mode code, may lead to a denial of service in the form of a system crash. |
NVIDIA GPU Display Driver for Windows contains a vulnerability in the kernel mode layer (nvlddmkm.sys) handler for private IOCTLs, where an attacker with local unprivileged system access may cause a NULL pointer dereference, which may lead to denial of service in a component beyond the vulnerable component. |
NVIDIA Linux kernel distributions contain a vulnerability in the kernel crypto node, where use after free may lead to complete denial of service. |
NVIDIA camera firmware contains a difficult to exploit vulnerability where a highly privileged attacker can cause unauthorized modification to camera resources, which may result in complete denial of service and partial loss of data integrity for all clients. |
NVIDIA Linux kernel distributions contain a vulnerability in nvmap, where a null pointer dereference may lead to complete denial of service. |
Bootloader contains a vulnerability in the NV3P server where any user with physical access through USB can trigger an incorrect bounds check, which may lead to buffer overflow, resulting in limited information disclosure, limited data integrity, and denial of service across all components. |
NVIDIA Linux kernel distributions on Jetson Xavier contain a vulnerability in camera firmware where a user can change input data after validation, which may lead to complete denial of service and serious data corruption of all kernel components. |
NVIDIA camera firmware contains a multistep, timing-related vulnerability where an unauthorized modification by camera resources may result in loss of data integrity or denial of service across several streams. |
NVIDIA Linux kernel distributions contain a vulnerability in FuSa Capture (VI/ISP), where integer underflow due to lack of input validation may lead to complete denial of service, partial integrity, and serious confidentiality loss for all processes in the system. |
NVIDIA Linux kernel distributions contain a vulnerability in nvmap NVMAP_IOC_WRITE* paths, where improper access controls may lead to code execution, complete denial of service, and seriously compromised integrity of all system components. |
NVIDIA Linux kernel distributions contain a vulnerability in nvmap, where writes may be allowed to read-only buffers, which may result in escalation of privileges, complete denial of service, unconstrained information disclosure, and serious data tampering of all processes on the system. |
NVIDIA GPU and Tegra hardware contain a vulnerability in the internal microcontroller which may allow a user with elevated privileges to access debug registers during runtime, which may lead to information disclosure. |
The RISC-V Instruction Set Manual contains a documented ambiguity for the Machine Trap Vector Base Address (MTVEC) register that may lead to a vulnerability due to the initial state of the register not being defined, potentially leading to information disclosure, data tampering and denial of service. |
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where it can dereference a NULL pointer, which may lead to denial of service. This affects vGPU version 12.x (prior to 12.3), version 11.x (prior to 11.5) and version 8.x (prior 8.8). |
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where it can lead to floating point exceptions, which may lead to denial of service. This affects vGPU version 12.x (prior to 12.3), version 11.x (prior to 11.5) and version 8.x (prior 8.8). |
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where it can dereference a NULL pointer, which may lead to denial of service. This affects vGPU version 12.x (prior to 12.3), version 11.x (prior to 11.5) and version 8.x (prior 8.8). |
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager kernel mode driver (nvidia.ko), in which a pointer to a user-space buffer is not validated before it is dereferenced, which may lead to denial of service. This affects vGPU version 12.x (prior to 12.3), version 11.x (prior to 11.5) and version 8.x (prior 8.8). |
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin) that could allow an attacker to cause stack-based buffer overflow and put a customized ROP gadget on the stack. Such an attack may lead to information disclosure, data tampering, or denial of service. This affects vGPU version 12.x (prior to 12.3), version 11.x (prior to 11.5) and version 8.x (prior 8.8). |
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where it doesn't release some resources during driver unload requests from guests. This flaw allows a malicious guest to perform operations by reusing those resources, which may lead to information disclosure, data tampering, or denial of service. This affects vGPU version 12.x (prior to 12.3), version 11.x (prior to 11.5) and version 8.x (prior 8.8). |
NVIDIA vGPU software contains a vulnerability in the Virtual GPU Manager (vGPU plugin), where it improperly validates the length field in a request from a guest. This flaw allows a malicious guest to send a length field that is inconsistent with the actual length of the input, which may lead to information disclosure, data tampering, or denial of service. This affects vGPU version 12.x (prior to 12.3), version 11.x (prior to 11.5) and version 8.x (prior 8.8). |