Filtered by vendor Redhat Subscriptions
Filtered by product Rhel Eus Subscriptions
Total 2530 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-27397 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-05 7.0 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: use timestamp to check for set element timeout Add a timestamp field at the beginning of the transaction, store it in the nftables per-netns area. Update set backend .insert, .deactivate and sync gc path to use the timestamp, this avoids that an element expires while control plane transaction is still unfinished. .lookup and .update, which are used from packet path, still use the current time to check if the element has expired. And .get path and dump also since this runs lockless under rcu read size lock. Then, there is async gc which also needs to check the current time since it runs asynchronously from a workqueue.
CVE-2024-27019 3 Fedoraproject, Linux, Redhat 7 Fedora, Linux Kernel, Enterprise Linux and 4 more 2024-11-05 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix potential data-race in __nft_obj_type_get() nft_unregister_obj() can concurrent with __nft_obj_type_get(), and there is not any protection when iterate over nf_tables_objects list in __nft_obj_type_get(). Therefore, there is potential data-race of nf_tables_objects list entry. Use list_for_each_entry_rcu() to iterate over nf_tables_objects list in __nft_obj_type_get(), and use rcu_read_lock() in the caller nft_obj_type_get() to protect the entire type query process.
CVE-2024-27016 3 Fedoraproject, Linux, Redhat 4 Fedora, Linux Kernel, Enterprise Linux and 1 more 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: netfilter: flowtable: validate pppoe header Ensure there is sufficient room to access the protocol field of the PPPoe header. Validate it once before the flowtable lookup, then use a helper function to access protocol field.
CVE-2024-26982 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: Squashfs: check the inode number is not the invalid value of zero Syskiller has produced an out of bounds access in fill_meta_index(). That out of bounds access is ultimately caused because the inode has an inode number with the invalid value of zero, which was not checked. The reason this causes the out of bounds access is due to following sequence of events: 1. Fill_meta_index() is called to allocate (via empty_meta_index()) and fill a metadata index. It however suffers a data read error and aborts, invalidating the newly returned empty metadata index. It does this by setting the inode number of the index to zero, which means unused (zero is not a valid inode number). 2. When fill_meta_index() is subsequently called again on another read operation, locate_meta_index() returns the previous index because it matches the inode number of 0. Because this index has been returned it is expected to have been filled, and because it hasn't been, an out of bounds access is performed. This patch adds a sanity check which checks that the inode number is not zero when the inode is created and returns -EINVAL if it is. [phillip@squashfs.org.uk: whitespace fix] Link: https://lkml.kernel.org/r/20240409204723.446925-1-phillip@squashfs.org.uk
CVE-2024-26947 1 Redhat 2 Enterprise Linux, Rhel Eus 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ARM: 9359/1: flush: check if the folio is reserved for no-mapping addresses Since commit a4d5613c4dc6 ("arm: extend pfn_valid to take into account freed memory map alignment") changes the semantics of pfn_valid() to check presence of the memory map for a PFN. A valid page for an address which is reserved but not mapped by the kernel[1], the system crashed during some uio test with the following memory layout: node 0: [mem 0x00000000c0a00000-0x00000000cc8fffff] node 0: [mem 0x00000000d0000000-0x00000000da1fffff] the uio layout is:0xc0900000, 0x100000 the crash backtrace like: Unable to handle kernel paging request at virtual address bff00000 [...] CPU: 1 PID: 465 Comm: startapp.bin Tainted: G O 5.10.0 #1 Hardware name: Generic DT based system PC is at b15_flush_kern_dcache_area+0x24/0x3c LR is at __sync_icache_dcache+0x6c/0x98 [...] (b15_flush_kern_dcache_area) from (__sync_icache_dcache+0x6c/0x98) (__sync_icache_dcache) from (set_pte_at+0x28/0x54) (set_pte_at) from (remap_pfn_range+0x1a0/0x274) (remap_pfn_range) from (uio_mmap+0x184/0x1b8 [uio]) (uio_mmap [uio]) from (__mmap_region+0x264/0x5f4) (__mmap_region) from (__do_mmap_mm+0x3ec/0x440) (__do_mmap_mm) from (do_mmap+0x50/0x58) (do_mmap) from (vm_mmap_pgoff+0xfc/0x188) (vm_mmap_pgoff) from (ksys_mmap_pgoff+0xac/0xc4) (ksys_mmap_pgoff) from (ret_fast_syscall+0x0/0x5c) Code: e0801001 e2423001 e1c00003 f57ff04f (ee070f3e) ---[ end trace 09cf0734c3805d52 ]--- Kernel panic - not syncing: Fatal exception So check if PG_reserved was set to solve this issue. [1]: https://lore.kernel.org/lkml/Zbtdue57RO0QScJM@linux.ibm.com/
CVE-2024-26946 1 Redhat 2 Enterprise Linux, Rhel Eus 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: kprobes/x86: Use copy_from_kernel_nofault() to read from unsafe address Read from an unsafe address with copy_from_kernel_nofault() in arch_adjust_kprobe_addr() because this function is used before checking the address is in text or not. Syzcaller bot found a bug and reported the case if user specifies inaccessible data area, arch_adjust_kprobe_addr() will cause a kernel panic. [ mingo: Clarified the comment. ]
CVE-2024-26930 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2024-11-05 7.8 High
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix double free of the ha->vp_map pointer Coverity scan reported potential risk of double free of the pointer ha->vp_map. ha->vp_map was freed in qla2x00_mem_alloc(), and again freed in function qla2x00_mem_free(ha). Assign NULL to vp_map and kfree take care of NULL.
CVE-2024-26929 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2024-11-05 7.7 High
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix double free of fcport The server was crashing after LOGO because fcport was getting freed twice. -----------[ cut here ]----------- kernel BUG at mm/slub.c:371! invalid opcode: 0000 1 SMP PTI CPU: 35 PID: 4610 Comm: bash Kdump: loaded Tainted: G OE --------- - - 4.18.0-425.3.1.el8.x86_64 #1 Hardware name: HPE ProLiant DL360 Gen10/ProLiant DL360 Gen10, BIOS U32 09/03/2021 RIP: 0010:set_freepointer.part.57+0x0/0x10 RSP: 0018:ffffb07107027d90 EFLAGS: 00010246 RAX: ffff9cb7e3150000 RBX: ffff9cb7e332b9c0 RCX: ffff9cb7e3150400 RDX: 0000000000001f37 RSI: 0000000000000000 RDI: ffff9cb7c0005500 RBP: fffff693448c5400 R08: 0000000080000000 R09: 0000000000000009 R10: 0000000000000000 R11: 0000000000132af0 R12: ffff9cb7c0005500 R13: ffff9cb7e3150000 R14: ffffffffc06990e0 R15: ffff9cb7ea85ea58 FS: 00007ff6b79c2740(0000) GS:ffff9cb8f7ec0000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 000055b426b7d700 CR3: 0000000169c18002 CR4: 00000000007706e0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 PKRU: 55555554 Call Trace: kfree+0x238/0x250 qla2x00_els_dcmd_sp_free+0x20/0x230 [qla2xxx] ? qla24xx_els_dcmd_iocb+0x607/0x690 [qla2xxx] qla2x00_issue_logo+0x28c/0x2a0 [qla2xxx] ? qla2x00_issue_logo+0x28c/0x2a0 [qla2xxx] ? kernfs_fop_write+0x11e/0x1a0 Remove one of the free calls and add check for valid fcport. Also use function qla2x00_free_fcport() instead of kfree().
CVE-2024-26886 1 Redhat 2 Enterprise Linux, Rhel Eus 2024-11-05 5.3 Medium
In the Linux kernel, the following vulnerability has been resolved: Bluetooth: af_bluetooth: Fix deadlock Attemting to do sock_lock on .recvmsg may cause a deadlock as shown bellow, so instead of using sock_sock this uses sk_receive_queue.lock on bt_sock_ioctl to avoid the UAF: INFO: task kworker/u9:1:121 blocked for more than 30 seconds. Not tainted 6.7.6-lemon #183 Workqueue: hci0 hci_rx_work Call Trace: <TASK> __schedule+0x37d/0xa00 schedule+0x32/0xe0 __lock_sock+0x68/0xa0 ? __pfx_autoremove_wake_function+0x10/0x10 lock_sock_nested+0x43/0x50 l2cap_sock_recv_cb+0x21/0xa0 l2cap_recv_frame+0x55b/0x30a0 ? psi_task_switch+0xeb/0x270 ? finish_task_switch.isra.0+0x93/0x2a0 hci_rx_work+0x33a/0x3f0 process_one_work+0x13a/0x2f0 worker_thread+0x2f0/0x410 ? __pfx_worker_thread+0x10/0x10 kthread+0xe0/0x110 ? __pfx_kthread+0x10/0x10 ret_from_fork+0x2c/0x50 ? __pfx_kthread+0x10/0x10 ret_from_fork_asm+0x1b/0x30 </TASK>
CVE-2024-26853 1 Redhat 2 Enterprise Linux, Rhel Eus 2024-11-05 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: igc: avoid returning frame twice in XDP_REDIRECT When a frame can not be transmitted in XDP_REDIRECT (e.g. due to a full queue), it is necessary to free it by calling xdp_return_frame_rx_napi. However, this is the responsibility of the caller of the ndo_xdp_xmit (see for example bq_xmit_all in kernel/bpf/devmap.c) and thus calling it inside igc_xdp_xmit (which is the ndo_xdp_xmit of the igc driver) as well will lead to memory corruption. In fact, bq_xmit_all expects that it can return all frames after the last successfully transmitted one. Therefore, break for the first not transmitted frame, but do not call xdp_return_frame_rx_napi in igc_xdp_xmit. This is equally implemented in other Intel drivers such as the igb. There are two alternatives to this that were rejected: 1. Return num_frames as all the frames would have been transmitted and release them inside igc_xdp_xmit. While it might work technically, it is not what the return value is meant to represent (i.e. the number of SUCCESSFULLY transmitted packets). 2. Rework kernel/bpf/devmap.c and all drivers to support non-consecutively dropped packets. Besides being complex, it likely has a negative performance impact without a significant gain since it is anyway unlikely that the next frame can be transmitted if the previous one was dropped. The memory corruption can be reproduced with the following script which leads to a kernel panic after a few seconds. It basically generates more traffic than a i225 NIC can transmit and pushes it via XDP_REDIRECT from a virtual interface to the physical interface where frames get dropped. #!/bin/bash INTERFACE=enp4s0 INTERFACE_IDX=`cat /sys/class/net/$INTERFACE/ifindex` sudo ip link add dev veth1 type veth peer name veth2 sudo ip link set up $INTERFACE sudo ip link set up veth1 sudo ip link set up veth2 cat << EOF > redirect.bpf.c SEC("prog") int redirect(struct xdp_md *ctx) { return bpf_redirect($INTERFACE_IDX, 0); } char _license[] SEC("license") = "GPL"; EOF clang -O2 -g -Wall -target bpf -c redirect.bpf.c -o redirect.bpf.o sudo ip link set veth2 xdp obj redirect.bpf.o cat << EOF > pass.bpf.c SEC("prog") int pass(struct xdp_md *ctx) { return XDP_PASS; } char _license[] SEC("license") = "GPL"; EOF clang -O2 -g -Wall -target bpf -c pass.bpf.c -o pass.bpf.o sudo ip link set $INTERFACE xdp obj pass.bpf.o cat << EOF > trafgen.cfg { /* Ethernet Header */ 0xe8, 0x6a, 0x64, 0x41, 0xbf, 0x46, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, const16(ETH_P_IP), /* IPv4 Header */ 0b01000101, 0, # IPv4 version, IHL, TOS const16(1028), # IPv4 total length (UDP length + 20 bytes (IP header)) const16(2), # IPv4 ident 0b01000000, 0, # IPv4 flags, fragmentation off 64, # IPv4 TTL 17, # Protocol UDP csumip(14, 33), # IPv4 checksum /* UDP Header */ 10, 0, 1, 1, # IP Src - adapt as needed 10, 0, 1, 2, # IP Dest - adapt as needed const16(6666), # UDP Src Port const16(6666), # UDP Dest Port const16(1008), # UDP length (UDP header 8 bytes + payload length) csumudp(14, 34), # UDP checksum /* Payload */ fill('W', 1000), } EOF sudo trafgen -i trafgen.cfg -b3000MB -o veth1 --cpp
CVE-2024-26828 1 Redhat 2 Enterprise Linux, Rhel Eus 2024-11-05 6.7 Medium
In the Linux kernel, the following vulnerability has been resolved: cifs: fix underflow in parse_server_interfaces() In this loop, we step through the buffer and after each item we check if the size_left is greater than the minimum size we need. However, the problem is that "bytes_left" is type ssize_t while sizeof() is type size_t. That means that because of type promotion, the comparison is done as an unsigned and if we have negative bytes left the loop continues instead of ending.
CVE-2024-26826 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mptcp: fix data re-injection from stale subflow When the MPTCP PM detects that a subflow is stale, all the packet scheduler must re-inject all the mptcp-level unacked data. To avoid acquiring unneeded locks, it first try to check if any unacked data is present at all in the RTX queue, but such check is currently broken, as it uses TCP-specific helper on an MPTCP socket. Funnily enough fuzzers and static checkers are happy, as the accessed memory still belongs to the mptcp_sock struct, and even from a functional perspective the recovery completed successfully, as the short-cut test always failed. A recent unrelated TCP change - commit d5fed5addb2b ("tcp: reorganize tcp_sock fast path variables") - exposed the issue, as the tcp field reorganization makes the mptcp code always skip the re-inection. Fix the issue dropping the bogus call: we are on a slow path, the early optimization proved once again to be evil.
CVE-2024-26783 1 Redhat 2 Enterprise Linux, Rhel Eus 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/vmscan: fix a bug calling wakeup_kswapd() with a wrong zone index With numa balancing on, when a numa system is running where a numa node doesn't have its local memory so it has no managed zones, the following oops has been observed. It's because wakeup_kswapd() is called with a wrong zone index, -1. Fixed it by checking the index before calling wakeup_kswapd(). > BUG: unable to handle page fault for address: 00000000000033f3 > #PF: supervisor read access in kernel mode > #PF: error_code(0x0000) - not-present page > PGD 0 P4D 0 > Oops: 0000 [#1] PREEMPT SMP NOPTI > CPU: 2 PID: 895 Comm: masim Not tainted 6.6.0-dirty #255 > Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS > rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 > RIP: 0010:wakeup_kswapd (./linux/mm/vmscan.c:7812) > Code: (omitted) > RSP: 0000:ffffc90004257d58 EFLAGS: 00010286 > RAX: ffffffffffffffff RBX: ffff88883fff0480 RCX: 0000000000000003 > RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88883fff0480 > RBP: ffffffffffffffff R08: ff0003ffffffffff R09: ffffffffffffffff > R10: ffff888106c95540 R11: 0000000055555554 R12: 0000000000000003 > R13: 0000000000000000 R14: 0000000000000000 R15: ffff88883fff0940 > FS: 00007fc4b8124740(0000) GS:ffff888827c00000(0000) knlGS:0000000000000000 > CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 > CR2: 00000000000033f3 CR3: 000000026cc08004 CR4: 0000000000770ee0 > DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 > DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 > PKRU: 55555554 > Call Trace: > <TASK> > ? __die > ? page_fault_oops > ? __pte_offset_map_lock > ? exc_page_fault > ? asm_exc_page_fault > ? wakeup_kswapd > migrate_misplaced_page > __handle_mm_fault > handle_mm_fault > do_user_addr_fault > exc_page_fault > asm_exc_page_fault > RIP: 0033:0x55b897ba0808 > Code: (omitted) > RSP: 002b:00007ffeefa821a0 EFLAGS: 00010287 > RAX: 000055b89983acd0 RBX: 00007ffeefa823f8 RCX: 000055b89983acd0 > RDX: 00007fc2f8122010 RSI: 0000000000020000 RDI: 000055b89983acd0 > RBP: 00007ffeefa821a0 R08: 0000000000000037 R09: 0000000000000075 > R10: 0000000000000000 R11: 0000000000000202 R12: 0000000000000000 > R13: 00007ffeefa82410 R14: 000055b897ba5dd8 R15: 00007fc4b8340000 > </TASK>
CVE-2024-26739 1 Redhat 2 Enterprise Linux, Rhel Eus 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/sched: act_mirred: don't override retval if we already lost the skb If we're redirecting the skb, and haven't called tcf_mirred_forward(), yet, we need to tell the core to drop the skb by setting the retcode to SHOT. If we have called tcf_mirred_forward(), however, the skb is out of our hands and returning SHOT will lead to UaF. Move the retval override to the error path which actually need it.
CVE-2024-26737 1 Redhat 2 Enterprise Linux, Rhel Eus 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bpf: Fix racing between bpf_timer_cancel_and_free and bpf_timer_cancel The following race is possible between bpf_timer_cancel_and_free and bpf_timer_cancel. It will lead a UAF on the timer->timer. bpf_timer_cancel(); spin_lock(); t = timer->time; spin_unlock(); bpf_timer_cancel_and_free(); spin_lock(); t = timer->timer; timer->timer = NULL; spin_unlock(); hrtimer_cancel(&t->timer); kfree(t); /* UAF on t */ hrtimer_cancel(&t->timer); In bpf_timer_cancel_and_free, this patch frees the timer->timer after a rcu grace period. This requires a rcu_head addition to the "struct bpf_hrtimer". Another kfree(t) happens in bpf_timer_init, this does not need a kfree_rcu because it is still under the spin_lock and timer->timer has not been visible by others yet. In bpf_timer_cancel, rcu_read_lock() is added because this helper can be used in a non rcu critical section context (e.g. from a sleepable bpf prog). Other timer->timer usages in helpers.c have been audited, bpf_timer_cancel() is the only place where timer->timer is used outside of the spin_lock. Another solution considered is to mark a t->flag in bpf_timer_cancel and clear it after hrtimer_cancel() is done. In bpf_timer_cancel_and_free, it busy waits for the flag to be cleared before kfree(t). This patch goes with a straight forward solution and frees timer->timer after a rcu grace period.
CVE-2024-26720 1 Redhat 2 Enterprise Linux, Rhel Eus 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/writeback: fix possible divide-by-zero in wb_dirty_limits(), again (struct dirty_throttle_control *)->thresh is an unsigned long, but is passed as the u32 divisor argument to div_u64(). On architectures where unsigned long is 64 bytes, the argument will be implicitly truncated. Use div64_u64() instead of div_u64() so that the value used in the "is this a safe division" check is the same as the divisor. Also, remove redundant cast of the numerator to u64, as that should happen implicitly. This would be difficult to exploit in memcg domain, given the ratio-based arithmetic domain_drity_limits() uses, but is much easier in global writeback domain with a BDI_CAP_STRICTLIMIT-backing device, using e.g. vm.dirty_bytes=(1<<32)*PAGE_SIZE so that dtc->thresh == (1<<32)
CVE-2024-26686 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-05 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: fs/proc: do_task_stat: use sig->stats_lock to gather the threads/children stats lock_task_sighand() can trigger a hard lockup. If NR_CPUS threads call do_task_stat() at the same time and the process has NR_THREADS, it will spin with irqs disabled O(NR_CPUS * NR_THREADS) time. Change do_task_stat() to use sig->stats_lock to gather the statistics outside of ->siglock protected section, in the likely case this code will run lockless.
CVE-2024-26668 1 Redhat 2 Enterprise Linux, Rhel Eus 2024-11-05 7.1 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: nft_limit: reject configurations that cause integer overflow Reject bogus configs where internal token counter wraps around. This only occurs with very very large requests, such as 17gbyte/s. Its better to reject this rather than having incorrect ratelimit.
CVE-2024-26656 1 Redhat 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more 2024-11-05 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix use-after-free bug The bug can be triggered by sending a single amdgpu_gem_userptr_ioctl to the AMDGPU DRM driver on any ASICs with an invalid address and size. The bug was reported by Joonkyo Jung <joonkyoj@yonsei.ac.kr>. For example the following code: static void Syzkaller1(int fd) { struct drm_amdgpu_gem_userptr arg; int ret; arg.addr = 0xffffffffffff0000; arg.size = 0x80000000; /*2 Gb*/ arg.flags = 0x7; ret = drmIoctl(fd, 0xc1186451/*amdgpu_gem_userptr_ioctl*/, &arg); } Due to the address and size are not valid there is a failure in amdgpu_hmm_register->mmu_interval_notifier_insert->__mmu_interval_notifier_insert-> check_shl_overflow, but we even the amdgpu_hmm_register failure we still call amdgpu_hmm_unregister into amdgpu_gem_object_free which causes access to a bad address. The following stack is below when the issue is reproduced when Kazan is enabled: [ +0.000014] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020 [ +0.000009] RIP: 0010:mmu_interval_notifier_remove+0x327/0x340 [ +0.000017] Code: ff ff 49 89 44 24 08 48 b8 00 01 00 00 00 00 ad de 4c 89 f7 49 89 47 40 48 83 c0 22 49 89 47 48 e8 ce d1 2d 01 e9 32 ff ff ff <0f> 0b e9 16 ff ff ff 4c 89 ef e8 fa 14 b3 ff e9 36 ff ff ff e8 80 [ +0.000014] RSP: 0018:ffffc90002657988 EFLAGS: 00010246 [ +0.000013] RAX: 0000000000000000 RBX: 1ffff920004caf35 RCX: ffffffff8160565b [ +0.000011] RDX: dffffc0000000000 RSI: 0000000000000004 RDI: ffff8881a9f78260 [ +0.000010] RBP: ffffc90002657a70 R08: 0000000000000001 R09: fffff520004caf25 [ +0.000010] R10: 0000000000000003 R11: ffffffff8161d1d6 R12: ffff88810e988c00 [ +0.000010] R13: ffff888126fb5a00 R14: ffff88810e988c0c R15: ffff8881a9f78260 [ +0.000011] FS: 00007ff9ec848540(0000) GS:ffff8883cc880000(0000) knlGS:0000000000000000 [ +0.000012] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ +0.000010] CR2: 000055b3f7e14328 CR3: 00000001b5770000 CR4: 0000000000350ef0 [ +0.000010] Call Trace: [ +0.000006] <TASK> [ +0.000007] ? show_regs+0x6a/0x80 [ +0.000018] ? __warn+0xa5/0x1b0 [ +0.000019] ? mmu_interval_notifier_remove+0x327/0x340 [ +0.000018] ? report_bug+0x24a/0x290 [ +0.000022] ? handle_bug+0x46/0x90 [ +0.000015] ? exc_invalid_op+0x19/0x50 [ +0.000016] ? asm_exc_invalid_op+0x1b/0x20 [ +0.000017] ? kasan_save_stack+0x26/0x50 [ +0.000017] ? mmu_interval_notifier_remove+0x23b/0x340 [ +0.000019] ? mmu_interval_notifier_remove+0x327/0x340 [ +0.000019] ? mmu_interval_notifier_remove+0x23b/0x340 [ +0.000020] ? __pfx_mmu_interval_notifier_remove+0x10/0x10 [ +0.000017] ? kasan_save_alloc_info+0x1e/0x30 [ +0.000018] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? __kasan_kmalloc+0xb1/0xc0 [ +0.000018] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? __kasan_check_read+0x11/0x20 [ +0.000020] amdgpu_hmm_unregister+0x34/0x50 [amdgpu] [ +0.004695] amdgpu_gem_object_free+0x66/0xa0 [amdgpu] [ +0.004534] ? __pfx_amdgpu_gem_object_free+0x10/0x10 [amdgpu] [ +0.004291] ? do_syscall_64+0x5f/0xe0 [ +0.000023] ? srso_return_thunk+0x5/0x5f [ +0.000017] drm_gem_object_free+0x3b/0x50 [drm] [ +0.000489] amdgpu_gem_userptr_ioctl+0x306/0x500 [amdgpu] [ +0.004295] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004270] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? __this_cpu_preempt_check+0x13/0x20 [ +0.000015] ? srso_return_thunk+0x5/0x5f [ +0.000013] ? sysvec_apic_timer_interrupt+0x57/0xc0 [ +0.000020] ? srso_return_thunk+0x5/0x5f [ +0.000014] ? asm_sysvec_apic_timer_interrupt+0x1b/0x20 [ +0.000022] ? drm_ioctl_kernel+0x17b/0x1f0 [drm] [ +0.000496] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004272] ? drm_ioctl_kernel+0x190/0x1f0 [drm] [ +0.000492] drm_ioctl_kernel+0x140/0x1f0 [drm] [ +0.000497] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu] [ +0.004297] ? __pfx_drm_ioctl_kernel+0x10/0x10 [d ---truncated---
CVE-2024-26585 2 Linux, Redhat 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more 2024-11-05 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: tls: fix race between tx work scheduling and socket close Similarly to previous commit, the submitting thread (recvmsg/sendmsg) may exit as soon as the async crypto handler calls complete(). Reorder scheduling the work before calling complete(). This seems more logical in the first place, as it's the inverse order of what the submitting thread will do.