Search Results (14541 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2024-42128 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: leds: an30259a: Use devm_mutex_init() for mutex initialization In this driver LEDs are registered using devm_led_classdev_register() so they are automatically unregistered after module's remove() is done. led_classdev_unregister() calls module's led_set_brightness() to turn off the LEDs and that callback uses mutex which was destroyed already in module's remove() so use devm API instead.
CVE-2024-42129 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: leds: mlxreg: Use devm_mutex_init() for mutex initialization In this driver LEDs are registered using devm_led_classdev_register() so they are automatically unregistered after module's remove() is done. led_classdev_unregister() calls module's led_set_brightness() to turn off the LEDs and that callback uses mutex which was destroyed already in module's remove() so use devm API instead.
CVE-2024-42266 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: make cow_file_range_inline() honor locked_page on error The btrfs buffered write path runs through __extent_writepage() which has some tricky return value handling for writepage_delalloc(). Specifically, when that returns 1, we exit, but for other return values we continue and end up calling btrfs_folio_end_all_writers(). If the folio has been unlocked (note that we check the PageLocked bit at the start of __extent_writepage()), this results in an assert panic like this one from syzbot: BTRFS: error (device loop0 state EAL) in free_log_tree:3267: errno=-5 IO failure BTRFS warning (device loop0 state EAL): Skipping commit of aborted transaction. BTRFS: error (device loop0 state EAL) in cleanup_transaction:2018: errno=-5 IO failure assertion failed: folio_test_locked(folio), in fs/btrfs/subpage.c:871 ------------[ cut here ]------------ kernel BUG at fs/btrfs/subpage.c:871! Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI CPU: 1 PID: 5090 Comm: syz-executor225 Not tainted 6.10.0-syzkaller-05505-gb1bc554e009e #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 06/27/2024 RIP: 0010:btrfs_folio_end_all_writers+0x55b/0x610 fs/btrfs/subpage.c:871 Code: e9 d3 fb ff ff e8 25 22 c2 fd 48 c7 c7 c0 3c 0e 8c 48 c7 c6 80 3d 0e 8c 48 c7 c2 60 3c 0e 8c b9 67 03 00 00 e8 66 47 ad 07 90 <0f> 0b e8 6e 45 b0 07 4c 89 ff be 08 00 00 00 e8 21 12 25 fe 4c 89 RSP: 0018:ffffc900033d72e0 EFLAGS: 00010246 RAX: 0000000000000045 RBX: 00fff0000000402c RCX: 663b7a08c50a0a00 RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000 RBP: ffffc900033d73b0 R08: ffffffff8176b98c R09: 1ffff9200067adfc R10: dffffc0000000000 R11: fffff5200067adfd R12: 0000000000000001 R13: dffffc0000000000 R14: 0000000000000000 R15: ffffea0001cbee80 FS: 0000000000000000(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f5f076012f8 CR3: 000000000e134000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <TASK> __extent_writepage fs/btrfs/extent_io.c:1597 [inline] extent_write_cache_pages fs/btrfs/extent_io.c:2251 [inline] btrfs_writepages+0x14d7/0x2760 fs/btrfs/extent_io.c:2373 do_writepages+0x359/0x870 mm/page-writeback.c:2656 filemap_fdatawrite_wbc+0x125/0x180 mm/filemap.c:397 __filemap_fdatawrite_range mm/filemap.c:430 [inline] __filemap_fdatawrite mm/filemap.c:436 [inline] filemap_flush+0xdf/0x130 mm/filemap.c:463 btrfs_release_file+0x117/0x130 fs/btrfs/file.c:1547 __fput+0x24a/0x8a0 fs/file_table.c:422 task_work_run+0x24f/0x310 kernel/task_work.c:222 exit_task_work include/linux/task_work.h:40 [inline] do_exit+0xa2f/0x27f0 kernel/exit.c:877 do_group_exit+0x207/0x2c0 kernel/exit.c:1026 __do_sys_exit_group kernel/exit.c:1037 [inline] __se_sys_exit_group kernel/exit.c:1035 [inline] __x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1035 x64_sys_call+0x2634/0x2640 arch/x86/include/generated/asm/syscalls_64.h:232 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f RIP: 0033:0x7f5f075b70c9 Code: Unable to access opcode bytes at 0x7f5f075b709f. I was hitting the same issue by doing hundreds of accelerated runs of generic/475, which also hits IO errors by design. I instrumented that reproducer with bpftrace and found that the undesirable folio_unlock was coming from the following callstack: folio_unlock+5 __process_pages_contig+475 cow_file_range_inline.constprop.0+230 cow_file_range+803 btrfs_run_delalloc_range+566 writepage_delalloc+332 __extent_writepage # inlined in my stacktrace, but I added it here extent_write_cache_pages+622 Looking at the bisected-to pa ---truncated---
CVE-2022-50396 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: net: sched: fix memory leak in tcindex_set_parms Syzkaller reports a memory leak as follows: ==================================== BUG: memory leak unreferenced object 0xffff88810c287f00 (size 256): comm "syz-executor105", pid 3600, jiffies 4294943292 (age 12.990s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace: [<ffffffff814cf9f0>] kmalloc_trace+0x20/0x90 mm/slab_common.c:1046 [<ffffffff839c9e07>] kmalloc include/linux/slab.h:576 [inline] [<ffffffff839c9e07>] kmalloc_array include/linux/slab.h:627 [inline] [<ffffffff839c9e07>] kcalloc include/linux/slab.h:659 [inline] [<ffffffff839c9e07>] tcf_exts_init include/net/pkt_cls.h:250 [inline] [<ffffffff839c9e07>] tcindex_set_parms+0xa7/0xbe0 net/sched/cls_tcindex.c:342 [<ffffffff839caa1f>] tcindex_change+0xdf/0x120 net/sched/cls_tcindex.c:553 [<ffffffff8394db62>] tc_new_tfilter+0x4f2/0x1100 net/sched/cls_api.c:2147 [<ffffffff8389e91c>] rtnetlink_rcv_msg+0x4dc/0x5d0 net/core/rtnetlink.c:6082 [<ffffffff839eba67>] netlink_rcv_skb+0x87/0x1d0 net/netlink/af_netlink.c:2540 [<ffffffff839eab87>] netlink_unicast_kernel net/netlink/af_netlink.c:1319 [inline] [<ffffffff839eab87>] netlink_unicast+0x397/0x4c0 net/netlink/af_netlink.c:1345 [<ffffffff839eb046>] netlink_sendmsg+0x396/0x710 net/netlink/af_netlink.c:1921 [<ffffffff8383e796>] sock_sendmsg_nosec net/socket.c:714 [inline] [<ffffffff8383e796>] sock_sendmsg+0x56/0x80 net/socket.c:734 [<ffffffff8383eb08>] ____sys_sendmsg+0x178/0x410 net/socket.c:2482 [<ffffffff83843678>] ___sys_sendmsg+0xa8/0x110 net/socket.c:2536 [<ffffffff838439c5>] __sys_sendmmsg+0x105/0x330 net/socket.c:2622 [<ffffffff83843c14>] __do_sys_sendmmsg net/socket.c:2651 [inline] [<ffffffff83843c14>] __se_sys_sendmmsg net/socket.c:2648 [inline] [<ffffffff83843c14>] __x64_sys_sendmmsg+0x24/0x30 net/socket.c:2648 [<ffffffff84605fd5>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff84605fd5>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 [<ffffffff84800087>] entry_SYSCALL_64_after_hwframe+0x63/0xcd ==================================== Kernel uses tcindex_change() to change an existing filter properties. Yet the problem is that, during the process of changing, if `old_r` is retrieved from `p->perfect`, then kernel uses tcindex_alloc_perfect_hash() to newly allocate filter results, uses tcindex_filter_result_init() to clear the old filter result, without destroying its tcf_exts structure, which triggers the above memory leak. To be more specific, there are only two source for the `old_r`, according to the tcindex_lookup(). `old_r` is retrieved from `p->perfect`, or `old_r` is retrieved from `p->h`. * If `old_r` is retrieved from `p->perfect`, kernel uses tcindex_alloc_perfect_hash() to newly allocate the filter results. Then `r` is assigned with `cp->perfect + handle`, which is newly allocated. So condition `old_r && old_r != r` is true in this situation, and kernel uses tcindex_filter_result_init() to clear the old filter result, without destroying its tcf_exts structure * If `old_r` is retrieved from `p->h`, then `p->perfect` is NULL according to the tcindex_lookup(). Considering that `cp->h` is directly copied from `p->h` and `p->perfect` is NULL, `r` is assigned with `tcindex_lookup(cp, handle)`, whose value should be the same as `old_r`, so condition `old_r && old_r != r` is false in this situation, kernel ignores using tcindex_filter_result_init() to clear the old filter result. So only when `old_r` is retrieved from `p->perfect` does kernel use tcindex_filter_result_init() to clear the old filter result, which triggers the above memory leak. Considering that there already exists a tc_filter_wq workqueue to destroy the old tcindex_d ---truncated---
CVE-2025-55111 2 Bmc, Linux 3 Control-m/agent, Control-m\/agent, Linux Kernel 2025-09-29 5.5 Medium
Certain files with overly permissive permissions were identified in the out-of-support Control-M/Agent versions 9.0.18 to 9.0.20 and potentially earlier unsupported versions as well as in newer versions which were upgraded from an affected version. These files contain keys and passwords relating to SSL files, keystore and policies. An attacker with local access to the system running the Agent can access these files.
CVE-2024-38547 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: atomisp: ssh_css: Fix a null-pointer dereference in load_video_binaries The allocation failure of mycs->yuv_scaler_binary in load_video_binaries() is followed with a dereference of mycs->yuv_scaler_binary after the following call chain: sh_css_pipe_load_binaries() |-> load_video_binaries(mycs->yuv_scaler_binary == NULL) | |-> sh_css_pipe_unload_binaries() |-> unload_video_binaries() In unload_video_binaries(), it calls to ia_css_binary_unload with argument &pipe->pipe_settings.video.yuv_scaler_binary[i], which refers to the same memory slot as mycs->yuv_scaler_binary. Thus, a null-pointer dereference is triggered.
CVE-2022-50399 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: atomisp: prevent integer overflow in sh_css_set_black_frame() The "height" and "width" values come from the user so the "height * width" multiplication can overflow.
CVE-2025-38703 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: drm/xe: Make dma-fences compliant with the safe access rules Xe can free some of the data pointed to by the dma-fences it exports. Most notably the timeline name can get freed if userspace closes the associated submit queue. At the same time the fence could have been exported to a third party (for example a sync_fence fd) which will then cause an use- after-free on subsequent access. To make this safe we need to make the driver compliant with the newly documented dma-fence rules. Driver has to ensure a RCU grace period between signalling a fence and freeing any data pointed to by said fence. For the timeline name we simply make the queue be freed via kfree_rcu and for the shared lock associated with multiple queues we add a RCU grace period before freeing the per GT structure holding the lock.
CVE-2024-42147 1 Linux 1 Linux Kernel 2025-09-29 7.8 High
In the Linux kernel, the following vulnerability has been resolved: crypto: hisilicon/debugfs - Fix debugfs uninit process issue During the zip probe process, the debugfs failure does not stop the probe. When debugfs initialization fails, jumping to the error branch will also release regs, in addition to its own rollback operation. As a result, it may be released repeatedly during the regs uninit process. Therefore, the null check needs to be added to the regs uninit process.
CVE-2024-41002 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: hisilicon/sec - Fix memory leak for sec resource release The AIV is one of the SEC resources. When releasing resources, it need to release the AIV resources at the same time. Otherwise, memory leakage occurs. The aiv resource release is added to the sec resource release function.
CVE-2023-53411 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PM: EM: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once.
CVE-2023-53385 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: mdp3: Fix resource leaks in of_find_device_by_node Use put_device to release the object get through of_find_device_by_node, avoiding resource leaks.
CVE-2023-53290 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: samples/bpf: Fix fout leak in hbm's run_bpf_prog Fix fout being fopen'ed but then not subsequently fclose'd. In the affected branch, fout is otherwise going out of scope.
CVE-2023-53202 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PM: domains: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once.
CVE-2022-50407 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: hisilicon/qm - increase the memory of local variables Increase the buffer to prevent stack overflow by fuzz test. The maximum length of the qos configuration buffer is 256 bytes. Currently, the value of the 'val buffer' is only 32 bytes. The sscanf does not check the dest memory length. So the 'val buffer' may stack overflow.
CVE-2022-50388 1 Linux 1 Linux Kernel 2025-09-29 7.0 High
In the Linux kernel, the following vulnerability has been resolved: nvme: fix multipath crash caused by flush request when blktrace is enabled The flush request initialized by blk_kick_flush has NULL bio, and it may be dealt with nvme_end_req during io completion. When blktrace is enabled, nvme_trace_bio_complete with multipath activated trying to access NULL pointer bio from flush request results in the following crash: [ 2517.831677] BUG: kernel NULL pointer dereference, address: 000000000000001a [ 2517.835213] #PF: supervisor read access in kernel mode [ 2517.838724] #PF: error_code(0x0000) - not-present page [ 2517.842222] PGD 7b2d51067 P4D 0 [ 2517.845684] Oops: 0000 [#1] SMP NOPTI [ 2517.849125] CPU: 2 PID: 732 Comm: kworker/2:1H Kdump: loaded Tainted: G S 5.15.67-0.cl9.x86_64 #1 [ 2517.852723] Hardware name: XFUSION 2288H V6/BC13MBSBC, BIOS 1.13 07/27/2022 [ 2517.856358] Workqueue: nvme_tcp_wq nvme_tcp_io_work [nvme_tcp] [ 2517.859993] RIP: 0010:blk_add_trace_bio_complete+0x6/0x30 [ 2517.863628] Code: 1f 44 00 00 48 8b 46 08 31 c9 ba 04 00 10 00 48 8b 80 50 03 00 00 48 8b 78 50 e9 e5 fe ff ff 0f 1f 44 00 00 41 54 49 89 f4 55 <0f> b6 7a 1a 48 89 d5 e8 3e 1c 2b 00 48 89 ee 4c 89 e7 5d 89 c1 ba [ 2517.871269] RSP: 0018:ff7f6a008d9dbcd0 EFLAGS: 00010286 [ 2517.875081] RAX: ff3d5b4be00b1d50 RBX: 0000000002040002 RCX: ff3d5b0a270f2000 [ 2517.878966] RDX: 0000000000000000 RSI: ff3d5b0b021fb9f8 RDI: 0000000000000000 [ 2517.882849] RBP: ff3d5b0b96a6fa00 R08: 0000000000000001 R09: 0000000000000000 [ 2517.886718] R10: 000000000000000c R11: 000000000000000c R12: ff3d5b0b021fb9f8 [ 2517.890575] R13: 0000000002000000 R14: ff3d5b0b021fb1b0 R15: 0000000000000018 [ 2517.894434] FS: 0000000000000000(0000) GS:ff3d5b42bfc80000(0000) knlGS:0000000000000000 [ 2517.898299] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 2517.902157] CR2: 000000000000001a CR3: 00000004f023e005 CR4: 0000000000771ee0 [ 2517.906053] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 2517.909930] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 2517.913761] PKRU: 55555554 [ 2517.917558] Call Trace: [ 2517.921294] <TASK> [ 2517.924982] nvme_complete_rq+0x1c3/0x1e0 [nvme_core] [ 2517.928715] nvme_tcp_recv_pdu+0x4d7/0x540 [nvme_tcp] [ 2517.932442] nvme_tcp_recv_skb+0x4f/0x240 [nvme_tcp] [ 2517.936137] ? nvme_tcp_recv_pdu+0x540/0x540 [nvme_tcp] [ 2517.939830] tcp_read_sock+0x9c/0x260 [ 2517.943486] nvme_tcp_try_recv+0x65/0xa0 [nvme_tcp] [ 2517.947173] nvme_tcp_io_work+0x64/0x90 [nvme_tcp] [ 2517.950834] process_one_work+0x1e8/0x390 [ 2517.954473] worker_thread+0x53/0x3c0 [ 2517.958069] ? process_one_work+0x390/0x390 [ 2517.961655] kthread+0x10c/0x130 [ 2517.965211] ? set_kthread_struct+0x40/0x40 [ 2517.968760] ret_from_fork+0x1f/0x30 [ 2517.972285] </TASK> To avoid this situation, add a NULL check for req->bio before calling trace_block_bio_complete.
CVE-2022-50383 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: mediatek: vcodec: Can't set dst buffer to done when lat decode error Core thread will call v4l2_m2m_buf_done to set dst buffer done for lat architecture. If lat call v4l2_m2m_buf_done_and_job_finish to free dst buffer when lat decode error, core thread will access kernel NULL pointer dereference, then crash.
CVE-2025-39867 1 Linux 1 Linux Kernel 2025-09-29 5.5 Medium
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
CVE-2025-39799 1 Linux 1 Linux Kernel 2025-09-29 N/A
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority.
CVE-2025-40300 1 Linux 1 Linux Kernel 2025-09-29 6.5 Medium
In the Linux kernel, the following vulnerability has been resolved: x86/vmscape: Add conditional IBPB mitigation VMSCAPE is a vulnerability that exploits insufficient branch predictor isolation between a guest and a userspace hypervisor (like QEMU). Existing mitigations already protect kernel/KVM from a malicious guest. Userspace can additionally be protected by flushing the branch predictors after a VMexit. Since it is the userspace that consumes the poisoned branch predictors, conditionally issue an IBPB after a VMexit and before returning to userspace. Workloads that frequently switch between hypervisor and userspace will incur the most overhead from the new IBPB. This new IBPB is not integrated with the existing IBPB sites. For instance, a task can use the existing speculation control prctl() to get an IBPB at context switch time. With this implementation, the IBPB is doubled up: one at context switch and another before running userspace. The intent is to integrate and optimize these cases post-embargo. [ dhansen: elaborate on suboptimal IBPB solution ]