| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
rust_binder: correctly handle FDA objects of length zero
Fix a bug where an empty FDA (fd array) object with 0 fds would cause an
out-of-bounds error. The previous implementation used `skip == 0` to
mean "this is a pointer fixup", but 0 is also the correct skip length
for an empty FDA. If the FDA is at the end of the buffer, then this
results in an attempt to write 8-bytes out of bounds. This is caught and
results in an EINVAL error being returned to userspace.
The pattern of using `skip == 0` as a special value originates from the
C-implementation of Binder. As part of fixing this bug, this pattern is
replaced with a Rust enum.
I considered the alternate option of not pushing a fixup when the length
is zero, but I think it's cleaner to just get rid of the zero-is-special
stuff.
The root cause of this bug was diagnosed by Gemini CLI on first try. I
used the following prompt:
> There appears to be a bug in @drivers/android/binder/thread.rs where
> the Fixups oob bug is triggered with 316 304 316 324. This implies
> that we somehow ended up with a fixup where buffer A has a pointer to
> buffer B, but the pointer is located at an index in buffer A that is
> out of bounds. Please investigate the code to find the bug. You may
> compare with @drivers/android/binder.c that implements this correctly. |
| In the Linux kernel, the following vulnerability has been resolved:
cgroup/dmem: fix NULL pointer dereference when setting max
An issue was triggered:
BUG: kernel NULL pointer dereference, address: 0000000000000000
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: Oops: 0000 [#1] SMP NOPTI
CPU: 15 UID: 0 PID: 658 Comm: bash Tainted: 6.19.0-rc6-next-2026012
Tainted: [O]=OOT_MODULE
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996),
RIP: 0010:strcmp+0x10/0x30
RSP: 0018:ffffc900017f7dc0 EFLAGS: 00000246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff888107cd4358
RDX: 0000000019f73907 RSI: ffffffff82cc381a RDI: 0000000000000000
RBP: ffff8881016bef0d R08: 000000006c0e7145 R09: 0000000056c0e714
R10: 0000000000000001 R11: ffff888107cd4358 R12: 0007ffffffffffff
R13: ffff888101399200 R14: ffff888100fcb360 R15: 0007ffffffffffff
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000000 CR3: 0000000105c79000 CR4: 00000000000006f0
Call Trace:
<TASK>
dmemcg_limit_write.constprop.0+0x16d/0x390
? __pfx_set_resource_max+0x10/0x10
kernfs_fop_write_iter+0x14e/0x200
vfs_write+0x367/0x510
ksys_write+0x66/0xe0
do_syscall_64+0x6b/0x390
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7f42697e1887
It was trriggered setting max without limitation, the command is like:
"echo test/region0 > dmem.max". To fix this issue, add check whether
options is valid after parsing the region_name. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: sync read disk super and set block size
When the user performs a btrfs mount, the block device is not set
correctly. The user sets the block size of the block device to 0x4000
by executing the BLKBSZSET command.
Since the block size change also changes the mapping->flags value, this
further affects the result of the mapping_min_folio_order() calculation.
Let's analyze the following two scenarios:
Scenario 1: Without executing the BLKBSZSET command, the block size is
0x1000, and mapping_min_folio_order() returns 0;
Scenario 2: After executing the BLKBSZSET command, the block size is
0x4000, and mapping_min_folio_order() returns 2.
do_read_cache_folio() allocates a folio before the BLKBSZSET command
is executed. This results in the allocated folio having an order value
of 0. Later, after BLKBSZSET is executed, the block size increases to
0x4000, and the mapping_min_folio_order() calculation result becomes 2.
This leads to two undesirable consequences:
1. filemap_add_folio() triggers a VM_BUG_ON_FOLIO(folio_order(folio) <
mapping_min_folio_order(mapping)) assertion.
2. The syzbot report [1] shows a null pointer dereference in
create_empty_buffers() due to a buffer head allocation failure.
Synchronization should be established based on the inode between the
BLKBSZSET command and read cache page to prevent inconsistencies in
block size or mapping flags before and after folio allocation.
[1]
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
RIP: 0010:create_empty_buffers+0x4d/0x480 fs/buffer.c:1694
Call Trace:
folio_create_buffers+0x109/0x150 fs/buffer.c:1802
block_read_full_folio+0x14c/0x850 fs/buffer.c:2403
filemap_read_folio+0xc8/0x2a0 mm/filemap.c:2496
do_read_cache_folio+0x266/0x5c0 mm/filemap.c:4096
do_read_cache_page mm/filemap.c:4162 [inline]
read_cache_page_gfp+0x29/0x120 mm/filemap.c:4195
btrfs_read_disk_super+0x192/0x500 fs/btrfs/volumes.c:1367 |
| In the Linux kernel, the following vulnerability has been resolved:
net: cpsw: Execute ndo_set_rx_mode callback in a work queue
Commit 1767bb2d47b7 ("ipv6: mcast: Don't hold RTNL for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP.") removed the RTNL lock for
IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP operations. However, this
change triggered the following call trace on my BeagleBone Black board:
WARNING: net/8021q/vlan_core.c:236 at vlan_for_each+0x120/0x124, CPU#0: rpcbind/481
RTNL: assertion failed at net/8021q/vlan_core.c (236)
Modules linked in:
CPU: 0 UID: 997 PID: 481 Comm: rpcbind Not tainted 6.19.0-rc7-next-20260130-yocto-standard+ #35 PREEMPT
Hardware name: Generic AM33XX (Flattened Device Tree)
Call trace:
unwind_backtrace from show_stack+0x28/0x2c
show_stack from dump_stack_lvl+0x30/0x38
dump_stack_lvl from __warn+0xb8/0x11c
__warn from warn_slowpath_fmt+0x130/0x194
warn_slowpath_fmt from vlan_for_each+0x120/0x124
vlan_for_each from cpsw_add_mc_addr+0x54/0x98
cpsw_add_mc_addr from __hw_addr_ref_sync_dev+0xc4/0xec
__hw_addr_ref_sync_dev from __dev_mc_add+0x78/0x88
__dev_mc_add from igmp6_group_added+0x84/0xec
igmp6_group_added from __ipv6_dev_mc_inc+0x1fc/0x2f0
__ipv6_dev_mc_inc from __ipv6_sock_mc_join+0x124/0x1b4
__ipv6_sock_mc_join from do_ipv6_setsockopt+0x84c/0x1168
do_ipv6_setsockopt from ipv6_setsockopt+0x88/0xc8
ipv6_setsockopt from do_sock_setsockopt+0xe8/0x19c
do_sock_setsockopt from __sys_setsockopt+0x84/0xac
__sys_setsockopt from ret_fast_syscall+0x0/0x54
This trace occurs because vlan_for_each() is called within
cpsw_ndo_set_rx_mode(), which expects the RTNL lock to be held.
Since modifying vlan_for_each() to operate without the RTNL lock is not
straightforward, and because ndo_set_rx_mode() is invoked both with and
without the RTNL lock across different code paths, simply adding
rtnl_lock() in cpsw_ndo_set_rx_mode() is not a viable solution.
To resolve this issue, we opt to execute the actual processing within
a work queue, following the approach used by the icssg-prueth driver.
Please note: To reproduce this issue, I manually reverted the changes to
am335x-bone-common.dtsi from commit c477358e66a3 ("ARM: dts: am335x-bone:
switch to new cpsw switch drv") in order to revert to the legacy cpsw
driver. |
| A Reflected Cross-site Scripting (XSS) vulnerability affecting ENOVIAvpm Web Access from ENOVIAvpm Version 1 Release 16 through ENOVIAvpm Version 1 Release 19 allows an attacker to execute arbitrary script code in user's browser session. |
| The WowRevenue plugin for WordPress is vulnerable to unauthorized plugin installation due to a missing capability check in the 'Notice::install_activate_plugin' function in all versions up to, and including, 2.1.3. This makes it possible for authenticated attackers, with subscriber-level access and above, to install arbitrary plugins on the affected site's server which may make remote code execution possible. |
| A Use of Uninitialized Variable vulnerability affecting the EPRT file reading procedure in SOLIDWORKS eDrawings from Release SOLIDWORKS Desktop 2025 through Release SOLIDWORKS Desktop 2026 could allow an attacker to execute arbitrary code while opening a specially crafted EPRT file. |
| The RegistrationMagic WordPress plugin before 6.0.7.2 does not have proper capability checks, allowing subscribers and above to create forms on the site. |
| The specific flaw exists within the Bluetooth stack developed by Alps Alpine of the Infotainment ECU manufactured by Bosch. The issue results from the lack of proper boundary validation of user-supplied data, which can result in a stack-based buffer overflow when receiving a specific packet on the established upper layer L2CAP channel. An attacker can leverage this vulnerability to obtain remote code execution on the Infotainment ECU with root privileges.
First identified on Nissan Leaf ZE1 manufactured in 2020. |
| The EventPrime plugin for WordPress is vulnerable to unauthorized image file upload in all versions up to, and including, 4.2.8.4. This is due to the plugin registering the upload_file_media AJAX action as publicly accessible (nopriv-enabled) without implementing any authentication, authorization, or nonce verification despite a nonce being created. This makes it possible for unauthenticated attackers to upload image files to the WordPress uploads directory and create Media Library attachments via the ep_upload_file_media endpoint. |
| There is a misconfiguration vulnerability inside the Infotainment ECU manufactured by BOSCH. The vulnerability happens during the startup phase of a specific systemd service, and as a result, the following developer features will be activated: the disabled firewall and the launched SSH server.
First identified on Nissan Leaf ZE1 manufactured in 2020. |
| The specific flaw exists within the Bluetooth stack developed by Alps Alpine of the Infotainment ECU manufactured by Bosch. The issue results from the lack of proper boundary validation of user-supplied data, which can result in a stack-based buffer overflow when receiving a specific packet on the established upper layer L2CAP channel. An attacker can leverage this vulnerability to obtain remote code execution on the Infotainment ECU with root privileges.
First identified on Nissan Leaf ZE1 manufactured in 2020. |
| The Infotainment ECU manufactured by Bosch uses a RH850 module for CAN communication. RH850 is connected to infotainment over the INC interface through a custom protocol. There is a vulnerability during processing requests of this protocol on the V850 side which allows an attacker with code execution on the infotainment main SoC to perform code execution on the RH850 module and subsequently send arbitrary CAN messages over the connected CAN bus.
First identified on Nissan Leaf ZE1 manufactured in 2020. |
| An issue in Visual Studio Code Extensions Markdown Preview Enhanced v0.8.18 allows attackers to execute arbitrary code via uploading a crafted .Md file. |
| The system suffers from the absence of a kernel module signature verification. If an attacker can execute commands on behalf of root user (due to additional vulnerabilities), then he/she is also able to load custom kernel modules to the kernel space and execute code in the kernel context. Such a flaw can lead to taking control over the entire system.
First identified on Nissan Leaf ZE1 manufactured in 2020. |
| eNet SMART HOME server 2.2.1 and 2.3.1 contains a missing authorization vulnerability in the deleteUserAccount JSON-RPC method that permits any authenticated low-privileged user (UG_USER) to delete arbitrary user accounts, except for the built-in admin account. The application does not enforce role-based access control on this function, allowing a standard user to submit a crafted POST request to /jsonrpc/management specifying another username to have that account removed without elevated permissions or additional confirmation. |
| In the Linux kernel, the following vulnerability has been resolved:
spi: tegra210-quad: Protect curr_xfer in tegra_qspi_combined_seq_xfer
The curr_xfer field is read by the IRQ handler without holding the lock
to check if a transfer is in progress. When clearing curr_xfer in the
combined sequence transfer loop, protect it with the spinlock to prevent
a race with the interrupt handler.
Protect the curr_xfer clearing at the exit path of
tegra_qspi_combined_seq_xfer() with the spinlock to prevent a race
with the interrupt handler that reads this field.
Without this protection, the IRQ handler could read a partially updated
curr_xfer value, leading to NULL pointer dereference or use-after-free. |
| eNet SMART HOME server 2.2.1 and 2.3.1 contains a privilege escalation vulnerability due to insufficient authorization checks in the setUserGroup JSON-RPC method. A low-privileged user (UG_USER) can send a crafted POST request to /jsonrpc/management specifying their own username to elevate their account to the UG_ADMIN group, bypassing intended access controls and gaining administrative capabilities such as modifying device configurations, network settings, and other smart home system functions. |
| LightLLM version 1.1.0 and prior contain an unauthenticated remote code execution vulnerability in PD (prefill-decode) disaggregation mode. The PD master node exposes WebSocket endpoints that receive binary frames and pass the data directly to pickle.loads() without authentication or validation. A remote attacker who can reach the PD master can send a crafted payload to achieve arbitrary code execution. |
| The Kadence Blocks — Page Builder Toolkit for Gutenberg Editor plugin for WordPress is vulnerable to unauthorized access due to a missing capability check on a function in all versions up to, and including, 3.5.32. This makes it possible for authenticated attackers, with Contributor-level access and above, to perform an unauthorized action. |