CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
fbdev: fbcon: release buffer when fbcon_do_set_font() failed
syzbot is reporting memory leak at fbcon_do_set_font() [1], for
commit a5a923038d70 ("fbdev: fbcon: Properly revert changes when
vc_resize() failed") missed that the buffer might be newly allocated
by fbcon_set_font(). |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix undefined behavior in bit shift for ext4_check_flag_values
Shifting signed 32-bit value by 31 bits is undefined, so changing
significant bit to unsigned. The UBSAN warning calltrace like below:
UBSAN: shift-out-of-bounds in fs/ext4/ext4.h:591:2
left shift of 1 by 31 places cannot be represented in type 'int'
Call Trace:
<TASK>
dump_stack_lvl+0x7d/0xa5
dump_stack+0x15/0x1b
ubsan_epilogue+0xe/0x4e
__ubsan_handle_shift_out_of_bounds+0x1e7/0x20c
ext4_init_fs+0x5a/0x277
do_one_initcall+0x76/0x430
kernel_init_freeable+0x3b3/0x422
kernel_init+0x24/0x1e0
ret_from_fork+0x1f/0x30
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
drivers/md/md-bitmap: check the return value of md_bitmap_get_counter()
Check the return value of md_bitmap_get_counter() in case it returns
NULL pointer, which will result in a null pointer dereference.
v2: update the check to include other dereference |
In the Linux kernel, the following vulnerability has been resolved:
nfsd: under NFSv4.1, fix double svc_xprt_put on rpc_create failure
On error situation `clp->cl_cb_conn.cb_xprt` should not be given
a reference to the xprt otherwise both client cleanup and the
error handling path of the caller call to put it. Better to
delay handing over the reference to a later branch.
[ 72.530665] refcount_t: underflow; use-after-free.
[ 72.531933] WARNING: CPU: 0 PID: 173 at lib/refcount.c:28 refcount_warn_saturate+0xcf/0x120
[ 72.533075] Modules linked in: nfsd(OE) nfsv4(OE) nfsv3(OE) nfs(OE) lockd(OE) compat_nfs_ssc(OE) nfs_acl(OE) rpcsec_gss_krb5(OE) auth_rpcgss(OE) rpcrdma(OE) dns_resolver fscache netfs grace rdma_cm iw_cm ib_cm sunrpc(OE) mlx5_ib mlx5_core mlxfw pci_hyperv_intf ib_uverbs ib_core xt_MASQUERADE nf_conntrack_netlink nft_counter xt_addrtype nft_compat br_netfilter bridge stp llc nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set overlay nf_tables nfnetlink crct10dif_pclmul crc32_pclmul ghash_clmulni_intel xfs serio_raw virtio_net virtio_blk net_failover failover fuse [last unloaded: sunrpc]
[ 72.540389] CPU: 0 PID: 173 Comm: kworker/u16:5 Tainted: G OE 5.15.82-dan #1
[ 72.541511] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-3.module+el8.7.0+1084+97b81f61 04/01/2014
[ 72.542717] Workqueue: nfsd4_callbacks nfsd4_run_cb_work [nfsd]
[ 72.543575] RIP: 0010:refcount_warn_saturate+0xcf/0x120
[ 72.544299] Code: 55 00 0f 0b 5d e9 01 50 98 00 80 3d 75 9e 39 08 00 0f 85 74 ff ff ff 48 c7 c7 e8 d1 60 8e c6 05 61 9e 39 08 01 e8 f6 51 55 00 <0f> 0b 5d e9 d9 4f 98 00 80 3d 4b 9e 39 08 00 0f 85 4c ff ff ff 48
[ 72.546666] RSP: 0018:ffffb3f841157cf0 EFLAGS: 00010286
[ 72.547393] RAX: 0000000000000026 RBX: ffff89ac6231d478 RCX: 0000000000000000
[ 72.548324] RDX: ffff89adb7c2c2c0 RSI: ffff89adb7c205c0 RDI: ffff89adb7c205c0
[ 72.549271] RBP: ffffb3f841157cf0 R08: 0000000000000000 R09: c0000000ffefffff
[ 72.550209] R10: 0000000000000001 R11: ffffb3f841157ad0 R12: ffff89ac6231d180
[ 72.551142] R13: ffff89ac6231d478 R14: ffff89ac40c06180 R15: ffff89ac6231d4b0
[ 72.552089] FS: 0000000000000000(0000) GS:ffff89adb7c00000(0000) knlGS:0000000000000000
[ 72.553175] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 72.553934] CR2: 0000563a310506a8 CR3: 0000000109a66000 CR4: 0000000000350ef0
[ 72.554874] Call Trace:
[ 72.555278] <TASK>
[ 72.555614] svc_xprt_put+0xaf/0xe0 [sunrpc]
[ 72.556276] nfsd4_process_cb_update.isra.11+0xb7/0x410 [nfsd]
[ 72.557087] ? update_load_avg+0x82/0x610
[ 72.557652] ? cpuacct_charge+0x60/0x70
[ 72.558212] ? dequeue_entity+0xdb/0x3e0
[ 72.558765] ? queued_spin_unlock+0x9/0x20
[ 72.559358] nfsd4_run_cb_work+0xfc/0x270 [nfsd]
[ 72.560031] process_one_work+0x1df/0x390
[ 72.560600] worker_thread+0x37/0x3b0
[ 72.561644] ? process_one_work+0x390/0x390
[ 72.562247] kthread+0x12f/0x150
[ 72.562710] ? set_kthread_struct+0x50/0x50
[ 72.563309] ret_from_fork+0x22/0x30
[ 72.563818] </TASK>
[ 72.564189] ---[ end trace 031117b1c72ec616 ]---
[ 72.566019] list_add corruption. next->prev should be prev (ffff89ac4977e538), but was ffff89ac4763e018. (next=ffff89ac4763e018).
[ 72.567647] ------------[ cut here ]------------ |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix race when detecting delalloc ranges during fiemap
For fiemap we recently stopped locking the target extent range for the
whole duration of the fiemap call, in order to avoid a deadlock in a
scenario where the fiemap buffer happens to be a memory mapped range of
the same file. This use case is very unlikely to be useful in practice but
it may be triggered by fuzz testing (syzbot, etc).
This however introduced a race that makes us miss delalloc ranges for
file regions that are currently holes, so the caller of fiemap will not
be aware that there's data for some file regions. This can be quite
serious for some use cases - for example in coreutils versions before 9.0,
the cp program used fiemap to detect holes and data in the source file,
copying only regions with data (extents or delalloc) from the source file
to the destination file in order to preserve holes (see the documentation
for its --sparse command line option). This means that if cp was used
with a source file that had delalloc in a hole, the destination file could
end up without that data, which is effectively a data loss issue, if it
happened to hit the race described below.
The race happens like this:
1) Fiemap is called, without the FIEMAP_FLAG_SYNC flag, for a file that
has delalloc in the file range [64M, 65M[, which is currently a hole;
2) Fiemap locks the inode in shared mode, then starts iterating the
inode's subvolume tree searching for file extent items, without having
the whole fiemap target range locked in the inode's io tree - the
change introduced recently by commit b0ad381fa769 ("btrfs: fix
deadlock with fiemap and extent locking"). It only locks ranges in
the io tree when it finds a hole or prealloc extent since that
commit;
3) Note that fiemap clones each leaf before using it, and this is to
avoid deadlocks when locking a file range in the inode's io tree and
the fiemap buffer is memory mapped to some file, because writing
to the page with btrfs_page_mkwrite() will wait on any ordered extent
for the page's range and the ordered extent needs to lock the range
and may need to modify the same leaf, therefore leading to a deadlock
on the leaf;
4) While iterating the file extent items in the cloned leaf before
finding the hole in the range [64M, 65M[, the delalloc in that range
is flushed and its ordered extent completes - meaning the corresponding
file extent item is in the inode's subvolume tree, but not present in
the cloned leaf that fiemap is iterating over;
5) When fiemap finds the hole in the [64M, 65M[ range by seeing the gap in
the cloned leaf (or a file extent item with disk_bytenr == 0 in case
the NO_HOLES feature is not enabled), it will lock that file range in
the inode's io tree and then search for delalloc by checking for the
EXTENT_DELALLOC bit in the io tree for that range and ordered extents
(with btrfs_find_delalloc_in_range()). But it finds nothing since the
delalloc in that range was already flushed and the ordered extent
completed and is gone - as a result fiemap will not report that there's
delalloc or an extent for the range [64M, 65M[, so user space will be
mislead into thinking that there's a hole in that range.
This could actually be sporadically triggered with test case generic/094
from fstests, which reports a missing extent/delalloc range like this:
generic/094 2s ... - output mismatch (see /home/fdmanana/git/hub/xfstests/results//generic/094.out.bad)
--- tests/generic/094.out 2020-06-10 19:29:03.830519425 +0100
+++ /home/fdmanana/git/hub/xfstests/results//generic/094.out.bad 2024-02-28 11:00:00.381071525 +0000
@@ -1,3 +1,9 @@
QA output created by 094
fiemap run with sync
fiemap run without sync
+ERROR: couldn't find extent at 7
+map is 'HHDDHPPDPHPH'
+logical: [ 5.. 6] phys:
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
pstore: inode: Only d_invalidate() is needed
Unloading a modular pstore backend with records in pstorefs would
trigger the dput() double-drop warning:
WARNING: CPU: 0 PID: 2569 at fs/dcache.c:762 dput.part.0+0x3f3/0x410
Using the combo of d_drop()/dput() (as mentioned in
Documentation/filesystems/vfs.rst) isn't the right approach here, and
leads to the reference counting problem seen above. Use d_invalidate()
and update the code to not bother checking for error codes that can
never happen.
--- |
MongoDB Server may allow upsert operations retried within a transaction to violate unique index constraints, potentially causing an invariant failure and server crash during commit. This issue may be triggered by improper WriteUnitOfWork state management. This issue affects MongoDB Server v6.0 versions prior to 6.0.25, MongoDB Server v7.0 versions prior to 7.0.22 and MongoDB Server v8.0 versions prior to 8.0.12 |
In the Linux kernel, the following vulnerability has been resolved:
tcp: fix page frag corruption on page fault
Steffen reported a TCP stream corruption for HTTP requests
served by the apache web-server using a cifs mount-point
and memory mapping the relevant file.
The root cause is quite similar to the one addressed by
commit 20eb4f29b602 ("net: fix sk_page_frag() recursion from
memory reclaim"). Here the nested access to the task page frag
is caused by a page fault on the (mmapped) user-space memory
buffer coming from the cifs file.
The page fault handler performs an smb transaction on a different
socket, inside the same process context. Since sk->sk_allaction
for such socket does not prevent the usage for the task_frag,
the nested allocation modify "under the hood" the page frag
in use by the outer sendmsg call, corrupting the stream.
The overall relevant stack trace looks like the following:
httpd 78268 [001] 3461630.850950: probe:tcp_sendmsg_locked:
ffffffff91461d91 tcp_sendmsg_locked+0x1
ffffffff91462b57 tcp_sendmsg+0x27
ffffffff9139814e sock_sendmsg+0x3e
ffffffffc06dfe1d smb_send_kvec+0x28
[...]
ffffffffc06cfaf8 cifs_readpages+0x213
ffffffff90e83c4b read_pages+0x6b
ffffffff90e83f31 __do_page_cache_readahead+0x1c1
ffffffff90e79e98 filemap_fault+0x788
ffffffff90eb0458 __do_fault+0x38
ffffffff90eb5280 do_fault+0x1a0
ffffffff90eb7c84 __handle_mm_fault+0x4d4
ffffffff90eb8093 handle_mm_fault+0xc3
ffffffff90c74f6d __do_page_fault+0x1ed
ffffffff90c75277 do_page_fault+0x37
ffffffff9160111e page_fault+0x1e
ffffffff9109e7b5 copyin+0x25
ffffffff9109eb40 _copy_from_iter_full+0xe0
ffffffff91462370 tcp_sendmsg_locked+0x5e0
ffffffff91462370 tcp_sendmsg_locked+0x5e0
ffffffff91462b57 tcp_sendmsg+0x27
ffffffff9139815c sock_sendmsg+0x4c
ffffffff913981f7 sock_write_iter+0x97
ffffffff90f2cc56 do_iter_readv_writev+0x156
ffffffff90f2dff0 do_iter_write+0x80
ffffffff90f2e1c3 vfs_writev+0xa3
ffffffff90f2e27c do_writev+0x5c
ffffffff90c042bb do_syscall_64+0x5b
ffffffff916000ad entry_SYSCALL_64_after_hwframe+0x65
The cifs filesystem rightfully sets sk_allocations to GFP_NOFS,
we can avoid the nesting using the sk page frag for allocation
lacking the __GFP_FS flag. Do not define an additional mm-helper
for that, as this is strictly tied to the sk page frag usage.
v1 -> v2:
- use a stricted sk_page_frag() check instead of reordering the
code (Eric) |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: mcast: remove one synchronize_net() barrier in ipv6_mc_down()
As discussed in the past (commit 2d3916f31891 ("ipv6: fix skb drops
in igmp6_event_query() and igmp6_event_report()")) I think the
synchronize_net() call in ipv6_mc_down() is not needed.
Under load, synchronize_net() can last between 200 usec and 5 ms.
KASAN seems to agree as well. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: wilc1000: do not realloc workqueue everytime an interface is added
Commit 09ed8bfc5215 ("wilc1000: Rename workqueue from "WILC_wq" to
"NETDEV-wq"") moved workqueue creation in wilc_netdev_ifc_init in order to
set the interface name in the workqueue name. However, while the driver
needs only one workqueue, the wilc_netdev_ifc_init is called each time we
add an interface over a phy, which in turns overwrite the workqueue with a
new one. This can be observed with the following commands:
for i in $(seq 0 10)
do
iw phy phy0 interface add wlan1 type managed
iw dev wlan1 del
done
ps -eo pid,comm|grep wlan
39 kworker/R-wlan0
98 kworker/R-wlan1
102 kworker/R-wlan1
105 kworker/R-wlan1
108 kworker/R-wlan1
111 kworker/R-wlan1
114 kworker/R-wlan1
117 kworker/R-wlan1
120 kworker/R-wlan1
123 kworker/R-wlan1
126 kworker/R-wlan1
129 kworker/R-wlan1
Fix this leakage by putting back hif_workqueue allocation in
wilc_cfg80211_init. Regarding the workqueue name, it is indeed relevant to
set it lowercase, however it is not attached to a specific netdev, so
enforcing netdev name in the name is not so relevant. Still, enrich the
name with the wiphy name to make it clear which phy is using the workqueue. |
In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix writeback data corruption
cifs writeback doesn't correctly handle the case where
cifs_extend_writeback() hits a point where it is considering an additional
folio, but this would overrun the wsize - at which point it drops out of
the xarray scanning loop and calls xas_pause(). The problem is that
xas_pause() advances the loop counter - thereby skipping that page.
What needs to happen is for xas_reset() to be called any time we decide we
don't want to process the page we're looking at, but rather send the
request we are building and start a new one.
Fix this by copying and adapting the netfslib writepages code as a
temporary measure, with cifs writeback intending to be offloaded to
netfslib in the near future.
This also fixes the issue with the use of filemap_get_folios_tag() causing
retry of a bunch of pages which the extender already dealt with.
This can be tested by creating, say, a 64K file somewhere not on cifs
(otherwise copy-offload may get underfoot), mounting a cifs share with a
wsize of 64000, copying the file to it and then comparing the original file
and the copy:
dd if=/dev/urandom of=/tmp/64K bs=64k count=1
mount //192.168.6.1/test /mnt -o user=...,pass=...,wsize=64000
cp /tmp/64K /mnt/64K
cmp /tmp/64K /mnt/64K
Without the fix, the cmp fails at position 64000 (or shortly thereafter). |
An authorized user can cause a crash in the MongoDB Server through a specially crafted $group query. This vulnerability is related to the incorrect handling of certain accumulator functions when additional parameters are specified within the $group operation. This vulnerability could lead to denial of service if triggered repeatedly. This issue affects MongoDB Server v6.0 versions prior to 6.0.25, MongoDB Server v7.0 versions prior to 7.0.22, MongoDB Server v8.0 versions prior to 8.0.12 and MongoDB Server v8.1 versions prior to 8.1.2 |
In the Linux kernel, the following vulnerability has been resolved:
drm/msm/devfreq: Fix OPP refcnt leak |
xgrammar is an open-source library for efficient, flexible, and portable structured generation. A grammar optimizer introduced in 0.1.23 processes large grammars (>100k characters) at very low rates, and can be used for DOS of model providers. This issue is fixed in version 0.1.24. |
In the Linux kernel, the following vulnerability has been resolved:
drm/vc4: kms: Clear the HVS FIFO commit pointer once done
Commit 9ec03d7f1ed3 ("drm/vc4: kms: Wait on previous FIFO users before a
commit") introduced a wait on the previous commit done on a given HVS
FIFO.
However, we never cleared that pointer once done. Since
drm_crtc_commit_put can free the drm_crtc_commit structure directly if
we were the last user, this means that it can lead to a use-after free
if we were to duplicate the state, and that stale pointer would even be
copied to the new state.
Set the pointer to NULL once we're done with the wait so that we don't
carry over a pointer to a free'd structure. |
In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix wrong list_del in smc_lgr_cleanup_early
smc_lgr_cleanup_early() meant to delete the link
group from the link group list, but it deleted
the list head by mistake.
This may cause memory corruption since we didn't
remove the real link group from the list and later
memseted the link group structure.
We got a list corruption panic when testing:
[ 231.277259] list_del corruption. prev->next should be ffff8881398a8000, but was 0000000000000000
[ 231.278222] ------------[ cut here ]------------
[ 231.278726] kernel BUG at lib/list_debug.c:53!
[ 231.279326] invalid opcode: 0000 [#1] SMP NOPTI
[ 231.279803] CPU: 0 PID: 5 Comm: kworker/0:0 Not tainted 5.10.46+ #435
[ 231.280466] Hardware name: Alibaba Cloud ECS, BIOS 8c24b4c 04/01/2014
[ 231.281248] Workqueue: events smc_link_down_work
[ 231.281732] RIP: 0010:__list_del_entry_valid+0x70/0x90
[ 231.282258] Code: 4c 60 82 e8 7d cc 6a 00 0f 0b 48 89 fe 48 c7 c7 88 4c
60 82 e8 6c cc 6a 00 0f 0b 48 89 fe 48 c7 c7 c0 4c 60 82 e8 5b cc 6a 00 <0f>
0b 48 89 fe 48 c7 c7 00 4d 60 82 e8 4a cc 6a 00 0f 0b cc cc cc
[ 231.284146] RSP: 0018:ffffc90000033d58 EFLAGS: 00010292
[ 231.284685] RAX: 0000000000000054 RBX: ffff8881398a8000 RCX: 0000000000000000
[ 231.285415] RDX: 0000000000000001 RSI: ffff88813bc18040 RDI: ffff88813bc18040
[ 231.286141] RBP: ffffffff8305ad40 R08: 0000000000000003 R09: 0000000000000001
[ 231.286873] R10: ffffffff82803da0 R11: ffffc90000033b90 R12: 0000000000000001
[ 231.287606] R13: 0000000000000000 R14: ffff8881398a8000 R15: 0000000000000003
[ 231.288337] FS: 0000000000000000(0000) GS:ffff88813bc00000(0000) knlGS:0000000000000000
[ 231.289160] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 231.289754] CR2: 0000000000e72058 CR3: 000000010fa96006 CR4: 00000000003706f0
[ 231.290485] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 231.291211] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 231.291940] Call Trace:
[ 231.292211] smc_lgr_terminate_sched+0x53/0xa0
[ 231.292677] smc_switch_conns+0x75/0x6b0
[ 231.293085] ? update_load_avg+0x1a6/0x590
[ 231.293517] ? ttwu_do_wakeup+0x17/0x150
[ 231.293907] ? update_load_avg+0x1a6/0x590
[ 231.294317] ? newidle_balance+0xca/0x3d0
[ 231.294716] smcr_link_down+0x50/0x1a0
[ 231.295090] ? __wake_up_common_lock+0x77/0x90
[ 231.295534] smc_link_down_work+0x46/0x60
[ 231.295933] process_one_work+0x18b/0x350 |
In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix rxrpc_local leak in rxrpc_lookup_peer()
Need to call rxrpc_put_local() for peer candidate before kfree() as it
holds a ref to rxrpc_local.
[DH: v2: Changed to abstract the peer freeing code out into a function] |
In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix rxrpc_peer leak in rxrpc_look_up_bundle()
Need to call rxrpc_put_peer() for bundle candidate before kfree() as it
holds a ref to rxrpc_peer.
[DH: v2: Changed to abstract out the bundle freeing code into a function] |
A flaw has been found in PHPGurukul Small CRM 4.0. Affected by this vulnerability is an unknown functionality of the file /get-quote.php. Executing manipulation of the argument Contact can lead to sql injection. The attack can be executed remotely. The exploit has been published and may be used. |
In the Linux kernel, the following vulnerability has been resolved:
regmap: maple: Fix cache corruption in regcache_maple_drop()
When keeping the upper end of a cache block entry, the entry[] array
must be indexed by the offset from the base register of the block,
i.e. max - mas.index.
The code was indexing entry[] by only the register address, leading
to an out-of-bounds access that copied some part of the kernel
memory over the cache contents.
This bug was not detected by the regmap KUnit test because it only
tests with a block of registers starting at 0, so mas.index == 0. |