| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A maliciously crafted GIF file, when parsed through Autodesk 3ds Max, can force an Out-of-Bounds Write vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process. |
| A maliciously crafted USD file, when loaded or imported into Autodesk Arnold or Autodesk 3ds Max, can force an Out-of-Bounds Write vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process. |
| A maliciously crafted GIF file, when parsed through Autodesk 3ds Max, can cause a Stack-Based Buffer Overflow vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process. |
| A maliciously crafted project directory, when opening a max file in Autodesk 3ds Max, could lead to execution of arbitrary code in the context of the current process due to an Untrusted Search Path being utilized. |
| A vulnerability in the Dynamic Vectoring and Streaming (DVS) Engine implementation of Cisco AsyncOS Software for Cisco Secure Web Appliance could allow an unauthenticated, remote attacker to bypass the anti-malware scanner, allowing malicious archive files to be downloaded.
This vulnerability is due to improper handling of certain archive files. An attacker could exploit this vulnerability by sending a crafted archive file, which should be blocked, through an affected device. A successful exploit could allow the attacker to bypass the anti-malware scanner and download malware onto an end user workstation. The downloaded malware will not automatically execute unless the end user extracts and launches the malicious file. |
| A vulnerability in the Certificate Management feature of Cisco Meeting Management could allow an authenticated, remote attacker to upload arbitrary files, execute arbitrary commands, and elevate privileges to root on an affected system.
This vulnerability is due to improper input validation in certain sections of the web-based management interface. An attacker could exploit this vulnerability by sending a crafted HTTP request to an affected system. A successful exploit could allow the attacker to upload arbitrary files to the affected system. The malicious files could overwrite system files that are processed by the root system account and allow arbitrary command execution with root privileges. To exploit this vulnerability, the attacker must have valid credentials for a user account with at least the role of video operator. |
| n8n is an open source workflow automation platform. From version 1.65.0 to before 1.114.3, the use of Buffer.allocUnsafe() and Buffer.allocUnsafeSlow() in the task runner allowed untrusted code to allocate uninitialized memory. Such uninitialized buffers could contain residual data from within the same Node.js process (for example, data from prior requests, tasks, secrets, or tokens), resulting in potential information disclosure. This issue has been patched in version 1.114.3. |
| A maliciously crafted RGB file, when parsed through Autodesk 3ds Max, can force a Memory Corruption vulnerability. A malicious actor can leverage this vulnerability to execute arbitrary code in the context of the current process. |
| Improper handling of insufficient permission or privileges in ClipboardService prior to SMR Apr-2025 Release 1 allows local attackers to access image files across multiple users. User interaction is required for triggering this vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix drm panic null pointer when driver not support atomic
When driver not support atomic, fb using plane->fb rather than
plane->state->fb.
(cherry picked from commit 2f2a72de673513247cd6fae14e53f6c40c5841ef) |
| In the Linux kernel, the following vulnerability has been resolved:
platform/x86/amd: Fix memory leak in wbrf_record()
The tmp buffer is allocated using kcalloc() but is not freed if
acpi_evaluate_dsm() fails. This causes a memory leak in the error path.
Fix this by explicitly freeing the tmp buffer in the error handling
path of acpi_evaluate_dsm(). |
| In the Linux kernel, the following vulnerability has been resolved:
mm/vma: fix anon_vma UAF on mremap() faulted, unfaulted merge
Patch series "mm/vma: fix anon_vma UAF on mremap() faulted, unfaulted
merge", v2.
Commit 879bca0a2c4f ("mm/vma: fix incorrectly disallowed anonymous VMA
merges") introduced the ability to merge previously unavailable VMA merge
scenarios.
However, it is handling merges incorrectly when it comes to mremap() of a
faulted VMA adjacent to an unfaulted VMA. The issues arise in three
cases:
1. Previous VMA unfaulted:
copied -----|
v
|-----------|.............|
| unfaulted |(faulted VMA)|
|-----------|.............|
prev
2. Next VMA unfaulted:
copied -----|
v
|.............|-----------|
|(faulted VMA)| unfaulted |
|.............|-----------|
next
3. Both adjacent VMAs unfaulted:
copied -----|
v
|-----------|.............|-----------|
| unfaulted |(faulted VMA)| unfaulted |
|-----------|.............|-----------|
prev next
This series fixes each of these cases, and introduces self tests to assert
that the issues are corrected.
I also test a further case which was already handled, to assert that my
changes continues to correctly handle it:
4. prev unfaulted, next faulted:
copied -----|
v
|-----------|.............|-----------|
| unfaulted |(faulted VMA)| faulted |
|-----------|.............|-----------|
prev next
This bug was discovered via a syzbot report, linked to in the first patch
in the series, I confirmed that this series fixes the bug.
I also discovered that we are failing to check that the faulted VMA was
not forked when merging a copied VMA in cases 1-3 above, an issue this
series also addresses.
I also added self tests to assert that this is resolved (and confirmed
that the tests failed prior to this).
I also cleaned up vma_expand() as part of this work, renamed
vma_had_uncowed_parents() to vma_is_fork_child() as the previous name was
unduly confusing, and simplified the comments around this function.
This patch (of 4):
Commit 879bca0a2c4f ("mm/vma: fix incorrectly disallowed anonymous VMA
merges") introduced the ability to merge previously unavailable VMA merge
scenarios.
The key piece of logic introduced was the ability to merge a faulted VMA
immediately next to an unfaulted VMA, which relies upon dup_anon_vma() to
correctly handle anon_vma state.
In the case of the merge of an existing VMA (that is changing properties
of a VMA and then merging if those properties are shared by adjacent
VMAs), dup_anon_vma() is invoked correctly.
However in the case of the merge of a new VMA, a corner case peculiar to
mremap() was missed.
The issue is that vma_expand() only performs dup_anon_vma() if the target
(the VMA that will ultimately become the merged VMA): is not the next VMA,
i.e. the one that appears after the range in which the new VMA is to be
established.
A key insight here is that in all other cases other than mremap(), a new
VMA merge either expands an existing VMA, meaning that the target VMA will
be that VMA, or would have anon_vma be NULL.
Specifically:
* __mmap_region() - no anon_vma in place, initial mapping.
* do_brk_flags() - expanding an existing VMA.
* vma_merge_extend() - expanding an existing VMA.
* relocate_vma_down() - no anon_vma in place, initial mapping.
In addition, we are in the unique situation of needing to duplicate
anon_vma state from a VMA that is neither the previous or next VMA being
merged with.
dup_anon_vma() deals exclusively with the target=unfaulted, src=faulted
case. This leaves four possibilities, in each case where the copied VMA
is faulted:
1. Previous VMA unfaulted:
copied -----|
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
vsock/virtio: cap TX credit to local buffer size
The virtio transports derives its TX credit directly from peer_buf_alloc,
which is set from the remote endpoint's SO_VM_SOCKETS_BUFFER_SIZE value.
On the host side this means that the amount of data we are willing to
queue for a connection is scaled by a guest-chosen buffer size, rather
than the host's own vsock configuration. A malicious guest can advertise
a large buffer and read slowly, causing the host to allocate a
correspondingly large amount of sk_buff memory.
The same thing would happen in the guest with a malicious host, since
virtio transports share the same code base.
Introduce a small helper, virtio_transport_tx_buf_size(), that
returns min(peer_buf_alloc, buf_alloc), and use it wherever we consume
peer_buf_alloc.
This ensures the effective TX window is bounded by both the peer's
advertised buffer and our own buf_alloc (already clamped to
buffer_max_size via SO_VM_SOCKETS_BUFFER_MAX_SIZE), so a remote peer
cannot force the other to queue more data than allowed by its own
vsock settings.
On an unpatched Ubuntu 22.04 host (~64 GiB RAM), running a PoC with
32 guest vsock connections advertising 2 GiB each and reading slowly
drove Slab/SUnreclaim from ~0.5 GiB to ~57 GiB; the system only
recovered after killing the QEMU process. That said, if QEMU memory is
limited with cgroups, the maximum memory used will be limited.
With this patch applied:
Before:
MemFree: ~61.6 GiB
Slab: ~142 MiB
SUnreclaim: ~117 MiB
After 32 high-credit connections:
MemFree: ~61.5 GiB
Slab: ~178 MiB
SUnreclaim: ~152 MiB
Only ~35 MiB increase in Slab/SUnreclaim, no host OOM, and the guest
remains responsive.
Compatibility with non-virtio transports:
- VMCI uses the AF_VSOCK buffer knobs to size its queue pairs per
socket based on the local vsk->buffer_* values; the remote side
cannot enlarge those queues beyond what the local endpoint
configured.
- Hyper-V's vsock transport uses fixed-size VMBus ring buffers and
an MTU bound; there is no peer-controlled credit field comparable
to peer_buf_alloc, and the remote endpoint cannot drive in-flight
kernel memory above those ring sizes.
- The loopback path reuses virtio_transport_common.c, so it
naturally follows the same semantics as the virtio transport.
This change is limited to virtio_transport_common.c and thus affects
virtio-vsock, vhost-vsock, and loopback, bringing them in line with the
"remote window intersected with local policy" behaviour that VMCI and
Hyper-V already effectively have.
[Stefano: small adjustments after changing the previous patch]
[Stefano: tweak the commit message] |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: smbd: fix dma_unmap_sg() nents
The dma_unmap_sg() functions should be called with the same nents as the
dma_map_sg(), not the value the map function returned. |
| In the Linux kernel, the following vulnerability has been resolved:
uacce: fix cdev handling in the cleanup path
When cdev_device_add fails, it internally releases the cdev memory,
and if cdev_device_del is then executed, it will cause a hang error.
To fix it, we check the return value of cdev_device_add() and clear
uacce->cdev to avoid calling cdev_device_del in the uacce_remove. |
| In the Linux kernel, the following vulnerability has been resolved:
arm64/fpsimd: signal: Allocate SSVE storage when restoring ZA
The code to restore a ZA context doesn't attempt to allocate the task's
sve_state before setting TIF_SME. Consequently, restoring a ZA context
can place a task into an invalid state where TIF_SME is set but the
task's sve_state is NULL.
In legitimate but uncommon cases where the ZA signal context was NOT
created by the kernel in the context of the same task (e.g. if the task
is saved/restored with something like CRIU), we have no guarantee that
sve_state had been allocated previously. In these cases, userspace can
enter streaming mode without trapping while sve_state is NULL, causing a
later NULL pointer dereference when the kernel attempts to store the
register state:
| # ./sigreturn-za
| Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
| Mem abort info:
| ESR = 0x0000000096000046
| EC = 0x25: DABT (current EL), IL = 32 bits
| SET = 0, FnV = 0
| EA = 0, S1PTW = 0
| FSC = 0x06: level 2 translation fault
| Data abort info:
| ISV = 0, ISS = 0x00000046, ISS2 = 0x00000000
| CM = 0, WnR = 1, TnD = 0, TagAccess = 0
| GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
| user pgtable: 4k pages, 52-bit VAs, pgdp=0000000101f47c00
| [0000000000000000] pgd=08000001021d8403, p4d=0800000102274403, pud=0800000102275403, pmd=0000000000000000
| Internal error: Oops: 0000000096000046 [#1] SMP
| Modules linked in:
| CPU: 0 UID: 0 PID: 153 Comm: sigreturn-za Not tainted 6.19.0-rc1 #1 PREEMPT
| Hardware name: linux,dummy-virt (DT)
| pstate: 214000c9 (nzCv daIF +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
| pc : sve_save_state+0x4/0xf0
| lr : fpsimd_save_user_state+0xb0/0x1c0
| sp : ffff80008070bcc0
| x29: ffff80008070bcc0 x28: fff00000c1ca4c40 x27: 63cfa172fb5cf658
| x26: fff00000c1ca5228 x25: 0000000000000000 x24: 0000000000000000
| x23: 0000000000000000 x22: fff00000c1ca4c40 x21: fff00000c1ca4c40
| x20: 0000000000000020 x19: fff00000ff6900f0 x18: 0000000000000000
| x17: fff05e8e0311f000 x16: 0000000000000000 x15: 028fca8f3bdaf21c
| x14: 0000000000000212 x13: fff00000c0209f10 x12: 0000000000000020
| x11: 0000000000200b20 x10: 0000000000000000 x9 : fff00000ff69dcc0
| x8 : 00000000000003f2 x7 : 0000000000000001 x6 : fff00000c1ca5b48
| x5 : fff05e8e0311f000 x4 : 0000000008000000 x3 : 0000000000000000
| x2 : 0000000000000001 x1 : fff00000c1ca5970 x0 : 0000000000000440
| Call trace:
| sve_save_state+0x4/0xf0 (P)
| fpsimd_thread_switch+0x48/0x198
| __switch_to+0x20/0x1c0
| __schedule+0x36c/0xce0
| schedule+0x34/0x11c
| exit_to_user_mode_loop+0x124/0x188
| el0_interrupt+0xc8/0xd8
| __el0_irq_handler_common+0x18/0x24
| el0t_64_irq_handler+0x10/0x1c
| el0t_64_irq+0x198/0x19c
| Code: 54000040 d51b4408 d65f03c0 d503245f (e5bb5800)
| ---[ end trace 0000000000000000 ]---
Fix this by having restore_za_context() ensure that the task's sve_state
is allocated, matching what we do when taking an SME trap. Any live
SVE/SSVE state (which is restored earlier from a separate signal
context) must be preserved, and hence this is not zeroed. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: core: Wake up the error handler when final completions race against each other
The fragile ordering between marking commands completed or failed so
that the error handler only wakes when the last running command
completes or times out has race conditions. These race conditions can
cause the SCSI layer to fail to wake the error handler, leaving I/O
through the SCSI host stuck as the error state cannot advance.
First, there is an memory ordering issue within scsi_dec_host_busy().
The write which clears SCMD_STATE_INFLIGHT may be reordered with reads
counting in scsi_host_busy(). While the local CPU will see its own
write, reordering can allow other CPUs in scsi_dec_host_busy() or
scsi_eh_inc_host_failed() to see a raised busy count, causing no CPU to
see a host busy equal to the host_failed count.
This race condition can be prevented with a memory barrier on the error
path to force the write to be visible before counting host busy
commands.
Second, there is a general ordering issue with scsi_eh_inc_host_failed(). By
counting busy commands before incrementing host_failed, it can race with a
final command in scsi_dec_host_busy(), such that scsi_dec_host_busy() does
not see host_failed incremented but scsi_eh_inc_host_failed() counts busy
commands before SCMD_STATE_INFLIGHT is cleared by scsi_dec_host_busy(),
resulting in neither waking the error handler task.
This needs the call to scsi_host_busy() to be moved after host_failed is
incremented to close the race condition. |
| n8n is an open source workflow automation platform. Prior to version 1.123.2, a Cross-Site Scripting (XSS) vulnerability has been identified in the handling of webhook responses and related HTTP endpoints. Under certain conditions, the Content Security Policy (CSP) sandbox protection intended to isolate HTML responses may not be applied correctly. An authenticated user with permission to create or modify workflows could abuse this to execute malicious scripts with same-origin privileges when other users interact with the crafted workflow. This could lead to session hijacking and account takeover. This issue has been patched in version 1.123.2. |
| IBM Cloud Pak System displays sensitive information in user messages that could aid in further attacks against the system. |
| Improper Neutralization of Input During Web Page Generation ("Cross-site Scripting") vulnerability in Drupal AT Internet SmartTag allows Cross-Site Scripting (XSS).This issue affects AT Internet SmartTag: from 0.0.0 before 1.0.1. |