| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
udp: Fix a data-race around sysctl_udp_l3mdev_accept.
While reading sysctl_udp_l3mdev_accept, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its reader. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv4: Fix data-races around sysctl_fib_multipath_hash_fields.
While reading sysctl_fib_multipath_hash_fields, it can be changed
concurrently. Thus, we need to add READ_ONCE() to its readers. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: Fix a data-race around sysctl_tcp_thin_linear_timeouts.
While reading sysctl_tcp_thin_linear_timeouts, it can be changed
concurrently. Thus, we need to add READ_ONCE() to its reader. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: Fix data-races around sysctl_tcp_recovery.
While reading sysctl_tcp_recovery, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its readers. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: Fix a data-race around sysctl_tcp_early_retrans.
While reading sysctl_tcp_early_retrans, it can be changed concurrently.
Thus, we need to add READ_ONCE() to its reader. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: Fix data-races around sysctl_tcp_slow_start_after_idle.
While reading sysctl_tcp_slow_start_after_idle, it can be changed
concurrently. Thus, we need to add READ_ONCE() to its readers. |
| In the Linux kernel, the following vulnerability has been resolved:
tcp: Fix data-races around sysctl_tcp_max_reordering.
While reading sysctl_tcp_max_reordering, it can be changed
concurrently. Thus, we need to add READ_ONCE() to its readers. |
| In the Linux kernel, the following vulnerability has been resolved:
list: fix a data-race around ep->rdllist
ep_poll() first calls ep_events_available() with no lock held and checks
if ep->rdllist is empty by list_empty_careful(), which reads
rdllist->prev. Thus all accesses to it need some protection to avoid
store/load-tearing.
Note INIT_LIST_HEAD_RCU() already has the annotation for both prev
and next.
Commit bf3b9f6372c4 ("epoll: Add busy poll support to epoll with socket
fds.") added the first lockless ep_events_available(), and commit
c5a282e9635e ("fs/epoll: reduce the scope of wq lock in epoll_wait()")
made some ep_events_available() calls lockless and added single call under
a lock, finally commit e59d3c64cba6 ("epoll: eliminate unnecessary lock
for zero timeout") made the last ep_events_available() lockless.
BUG: KCSAN: data-race in do_epoll_wait / do_epoll_wait
write to 0xffff88810480c7d8 of 8 bytes by task 1802 on cpu 0:
INIT_LIST_HEAD include/linux/list.h:38 [inline]
list_splice_init include/linux/list.h:492 [inline]
ep_start_scan fs/eventpoll.c:622 [inline]
ep_send_events fs/eventpoll.c:1656 [inline]
ep_poll fs/eventpoll.c:1806 [inline]
do_epoll_wait+0x4eb/0xf40 fs/eventpoll.c:2234
do_epoll_pwait fs/eventpoll.c:2268 [inline]
__do_sys_epoll_pwait fs/eventpoll.c:2281 [inline]
__se_sys_epoll_pwait+0x12b/0x240 fs/eventpoll.c:2275
__x64_sys_epoll_pwait+0x74/0x80 fs/eventpoll.c:2275
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
read to 0xffff88810480c7d8 of 8 bytes by task 1799 on cpu 1:
list_empty_careful include/linux/list.h:329 [inline]
ep_events_available fs/eventpoll.c:381 [inline]
ep_poll fs/eventpoll.c:1797 [inline]
do_epoll_wait+0x279/0xf40 fs/eventpoll.c:2234
do_epoll_pwait fs/eventpoll.c:2268 [inline]
__do_sys_epoll_pwait fs/eventpoll.c:2281 [inline]
__se_sys_epoll_pwait+0x12b/0x240 fs/eventpoll.c:2275
__x64_sys_epoll_pwait+0x74/0x80 fs/eventpoll.c:2275
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x44/0xd0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
value changed: 0xffff88810480c7d0 -> 0xffff888103c15098
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 1799 Comm: syz-fuzzer Tainted: G W 5.17.0-rc7-syzkaller-dirty #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix race condition between ext4_write and ext4_convert_inline_data
Hulk Robot reported a BUG_ON:
==================================================================
EXT4-fs error (device loop3): ext4_mb_generate_buddy:805: group 0,
block bitmap and bg descriptor inconsistent: 25 vs 31513 free clusters
kernel BUG at fs/ext4/ext4_jbd2.c:53!
invalid opcode: 0000 [#1] SMP KASAN PTI
CPU: 0 PID: 25371 Comm: syz-executor.3 Not tainted 5.10.0+ #1
RIP: 0010:ext4_put_nojournal fs/ext4/ext4_jbd2.c:53 [inline]
RIP: 0010:__ext4_journal_stop+0x10e/0x110 fs/ext4/ext4_jbd2.c:116
[...]
Call Trace:
ext4_write_inline_data_end+0x59a/0x730 fs/ext4/inline.c:795
generic_perform_write+0x279/0x3c0 mm/filemap.c:3344
ext4_buffered_write_iter+0x2e3/0x3d0 fs/ext4/file.c:270
ext4_file_write_iter+0x30a/0x11c0 fs/ext4/file.c:520
do_iter_readv_writev+0x339/0x3c0 fs/read_write.c:732
do_iter_write+0x107/0x430 fs/read_write.c:861
vfs_writev fs/read_write.c:934 [inline]
do_pwritev+0x1e5/0x380 fs/read_write.c:1031
[...]
==================================================================
Above issue may happen as follows:
cpu1 cpu2
__________________________|__________________________
do_pwritev
vfs_writev
do_iter_write
ext4_file_write_iter
ext4_buffered_write_iter
generic_perform_write
ext4_da_write_begin
vfs_fallocate
ext4_fallocate
ext4_convert_inline_data
ext4_convert_inline_data_nolock
ext4_destroy_inline_data_nolock
clear EXT4_STATE_MAY_INLINE_DATA
ext4_map_blocks
ext4_ext_map_blocks
ext4_mb_new_blocks
ext4_mb_regular_allocator
ext4_mb_good_group_nolock
ext4_mb_init_group
ext4_mb_init_cache
ext4_mb_generate_buddy --> error
ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)
ext4_restore_inline_data
set EXT4_STATE_MAY_INLINE_DATA
ext4_block_write_begin
ext4_da_write_end
ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)
ext4_write_inline_data_end
handle=NULL
ext4_journal_stop(handle)
__ext4_journal_stop
ext4_put_nojournal(handle)
ref_cnt = (unsigned long)handle
BUG_ON(ref_cnt == 0) ---> BUG_ON
The lock held by ext4_convert_inline_data is xattr_sem, but the lock
held by generic_perform_write is i_rwsem. Therefore, the two locks can
be concurrent.
To solve above issue, we add inode_lock() for ext4_convert_inline_data().
At the same time, move ext4_convert_inline_data() in front of
ext4_punch_hole(), remove similar handling from ext4_punch_hole(). |
| In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix a data-race in unix_dgram_peer_wake_me().
unix_dgram_poll() calls unix_dgram_peer_wake_me() without `other`'s
lock held and check if its receive queue is full. Here we need to
use unix_recvq_full_lockless() instead of unix_recvq_full(), otherwise
KCSAN will report a data-race. |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: fix race between nbd_alloc_config() and module removal
When nbd module is being removing, nbd_alloc_config() may be
called concurrently by nbd_genl_connect(), although try_module_get()
will return false, but nbd_alloc_config() doesn't handle it.
The race may lead to the leak of nbd_config and its related
resources (e.g, recv_workq) and oops in nbd_read_stat() due
to the unload of nbd module as shown below:
BUG: kernel NULL pointer dereference, address: 0000000000000040
Oops: 0000 [#1] SMP PTI
CPU: 5 PID: 13840 Comm: kworker/u17:33 Not tainted 5.14.0+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Workqueue: knbd16-recv recv_work [nbd]
RIP: 0010:nbd_read_stat.cold+0x130/0x1a4 [nbd]
Call Trace:
recv_work+0x3b/0xb0 [nbd]
process_one_work+0x1ed/0x390
worker_thread+0x4a/0x3d0
kthread+0x12a/0x150
ret_from_fork+0x22/0x30
Fixing it by checking the return value of try_module_get()
in nbd_alloc_config(). As nbd_alloc_config() may return ERR_PTR(-ENODEV),
assign nbd->config only when nbd_alloc_config() succeeds to ensure
the value of nbd->config is binary (valid or NULL).
Also adding a debug message to check the reference counter
of nbd_config during module removal. |
| In the Linux kernel, the following vulnerability has been resolved:
xsk: Fix race at socket teardown
Fix a race in the xsk socket teardown code that can lead to a NULL pointer
dereference splat. The current xsk unbind code in xsk_unbind_dev() starts by
setting xs->state to XSK_UNBOUND, sets xs->dev to NULL and then waits for any
NAPI processing to terminate using synchronize_net(). After that, the release
code starts to tear down the socket state and free allocated memory.
BUG: kernel NULL pointer dereference, address: 00000000000000c0
PGD 8000000932469067 P4D 8000000932469067 PUD 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 25 PID: 69132 Comm: grpcpp_sync_ser Tainted: G I 5.16.0+ #2
Hardware name: Dell Inc. PowerEdge R730/0599V5, BIOS 1.2.10 03/09/2015
RIP: 0010:__xsk_sendmsg+0x2c/0x690
[...]
RSP: 0018:ffffa2348bd13d50 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000040 RCX: ffff8d5fc632d258
RDX: 0000000000400000 RSI: ffffa2348bd13e10 RDI: ffff8d5fc5489800
RBP: ffffa2348bd13db0 R08: 0000000000000000 R09: 00007ffffffff000
R10: 0000000000000000 R11: 0000000000000000 R12: ffff8d5fc5489800
R13: ffff8d5fcb0f5140 R14: ffff8d5fcb0f5140 R15: 0000000000000000
FS: 00007f991cff9400(0000) GS:ffff8d6f1f700000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00000000000000c0 CR3: 0000000114888005 CR4: 00000000001706e0
Call Trace:
<TASK>
? aa_sk_perm+0x43/0x1b0
xsk_sendmsg+0xf0/0x110
sock_sendmsg+0x65/0x70
__sys_sendto+0x113/0x190
? debug_smp_processor_id+0x17/0x20
? fpregs_assert_state_consistent+0x23/0x50
? exit_to_user_mode_prepare+0xa5/0x1d0
__x64_sys_sendto+0x29/0x30
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
There are two problems with the current code. First, setting xs->dev to NULL
before waiting for all users to stop using the socket is not correct. The
entry to the data plane functions xsk_poll(), xsk_sendmsg(), and xsk_recvmsg()
are all guarded by a test that xs->state is in the state XSK_BOUND and if not,
it returns right away. But one process might have passed this test but still
have not gotten to the point in which it uses xs->dev in the code. In this
interim, a second process executing xsk_unbind_dev() might have set xs->dev to
NULL which will lead to a crash for the first process. The solution here is
just to get rid of this NULL assignment since it is not used anymore. Before
commit 42fddcc7c64b ("xsk: use state member for socket synchronization"),
xs->dev was the gatekeeper to admit processes into the data plane functions,
but it was replaced with the state variable xs->state in the aforementioned
commit.
The second problem is that synchronize_net() does not wait for any process in
xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() to complete, which means that the
state they rely on might be cleaned up prematurely. This can happen when the
notifier gets called (at driver unload for example) as it uses xsk_unbind_dev().
Solve this by extending the RCU critical region from just the ndo_xsk_wakeup
to the whole functions mentioned above, so that both the test of xs->state ==
XSK_BOUND and the last use of any member of xs is covered by the RCU critical
section. This will guarantee that when synchronize_net() completes, there will
be no processes left executing xsk_poll(), xsk_sendmsg(), or xsk_recvmsg() and
state can be cleaned up safely. Note that we need to drop the RCU lock for the
skb xmit path as it uses functions that might sleep. Due to this, we have to
retest the xs->state after we grab the mutex that protects the skb xmit code
from, among a number of things, an xsk_unbind_dev() being executed from the
notifier at the same time. |
| In the Linux kernel, the following vulnerability has been resolved:
ibmvnic: fix race between xmit and reset
There is a race between reset and the transmit paths that can lead to
ibmvnic_xmit() accessing an scrq after it has been freed in the reset
path. It can result in a crash like:
Kernel attempted to read user page (0) - exploit attempt? (uid: 0)
BUG: Kernel NULL pointer dereference on read at 0x00000000
Faulting instruction address: 0xc0080000016189f8
Oops: Kernel access of bad area, sig: 11 [#1]
...
NIP [c0080000016189f8] ibmvnic_xmit+0x60/0xb60 [ibmvnic]
LR [c000000000c0046c] dev_hard_start_xmit+0x11c/0x280
Call Trace:
[c008000001618f08] ibmvnic_xmit+0x570/0xb60 [ibmvnic] (unreliable)
[c000000000c0046c] dev_hard_start_xmit+0x11c/0x280
[c000000000c9cfcc] sch_direct_xmit+0xec/0x330
[c000000000bfe640] __dev_xmit_skb+0x3a0/0x9d0
[c000000000c00ad4] __dev_queue_xmit+0x394/0x730
[c008000002db813c] __bond_start_xmit+0x254/0x450 [bonding]
[c008000002db8378] bond_start_xmit+0x40/0xc0 [bonding]
[c000000000c0046c] dev_hard_start_xmit+0x11c/0x280
[c000000000c00ca4] __dev_queue_xmit+0x564/0x730
[c000000000cf97e0] neigh_hh_output+0xd0/0x180
[c000000000cfa69c] ip_finish_output2+0x31c/0x5c0
[c000000000cfd244] __ip_queue_xmit+0x194/0x4f0
[c000000000d2a3c4] __tcp_transmit_skb+0x434/0x9b0
[c000000000d2d1e0] __tcp_retransmit_skb+0x1d0/0x6a0
[c000000000d2d984] tcp_retransmit_skb+0x34/0x130
[c000000000d310e8] tcp_retransmit_timer+0x388/0x6d0
[c000000000d315ec] tcp_write_timer_handler+0x1bc/0x330
[c000000000d317bc] tcp_write_timer+0x5c/0x200
[c000000000243270] call_timer_fn+0x50/0x1c0
[c000000000243704] __run_timers.part.0+0x324/0x460
[c000000000243894] run_timer_softirq+0x54/0xa0
[c000000000ea713c] __do_softirq+0x15c/0x3e0
[c000000000166258] __irq_exit_rcu+0x158/0x190
[c000000000166420] irq_exit+0x20/0x40
[c00000000002853c] timer_interrupt+0x14c/0x2b0
[c000000000009a00] decrementer_common_virt+0x210/0x220
--- interrupt: 900 at plpar_hcall_norets_notrace+0x18/0x2c
The immediate cause of the crash is the access of tx_scrq in the following
snippet during a reset, where the tx_scrq can be either NULL or an address
that will soon be invalid:
ibmvnic_xmit()
{
...
tx_scrq = adapter->tx_scrq[queue_num];
txq = netdev_get_tx_queue(netdev, queue_num);
ind_bufp = &tx_scrq->ind_buf;
if (test_bit(0, &adapter->resetting)) {
...
}
But beyond that, the call to ibmvnic_xmit() itself is not safe during a
reset and the reset path attempts to avoid this by stopping the queue in
ibmvnic_cleanup(). However just after the queue was stopped, an in-flight
ibmvnic_complete_tx() could have restarted the queue even as the reset is
progressing.
Since the queue was restarted we could get a call to ibmvnic_xmit() which
can then access the bad tx_scrq (or other fields).
We cannot however simply have ibmvnic_complete_tx() check the ->resetting
bit and skip starting the queue. This can race at the "back-end" of a good
reset which just restarted the queue but has not cleared the ->resetting
bit yet. If we skip restarting the queue due to ->resetting being true,
the queue would remain stopped indefinitely potentially leading to transmit
timeouts.
IOW ->resetting is too broad for this purpose. Instead use a new flag
that indicates whether or not the queues are active. Only the open/
reset paths control when the queues are active. ibmvnic_complete_tx()
and others wake up the queue only if the queue is marked active.
So we will have:
A. reset/open thread in ibmvnic_cleanup() and __ibmvnic_open()
->resetting = true
->tx_queues_active = false
disable tx queues
...
->tx_queues_active = true
start tx queues
B. Tx interrupt in ibmvnic_complete_tx():
if (->tx_queues_active)
netif_wake_subqueue();
To ensure that ->tx_queues_active and state of the queues are consistent,
we need a lock which:
- must also be taken in the interrupt path (ibmvnic_complete_tx())
- shared across the multiple
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mm: fix kernel BUG when userfaultfd_move encounters swapcache
userfaultfd_move() checks whether the PTE entry is present or a
swap entry.
- If the PTE entry is present, move_present_pte() handles folio
migration by setting:
src_folio->index = linear_page_index(dst_vma, dst_addr);
- If the PTE entry is a swap entry, move_swap_pte() simply copies
the PTE to the new dst_addr.
This approach is incorrect because, even if the PTE is a swap entry,
it can still reference a folio that remains in the swap cache.
This creates a race window between steps 2 and 4.
1. add_to_swap: The folio is added to the swapcache.
2. try_to_unmap: PTEs are converted to swap entries.
3. pageout: The folio is written back.
4. Swapcache is cleared.
If userfaultfd_move() occurs in the window between steps 2 and 4,
after the swap PTE has been moved to the destination, accessing the
destination triggers do_swap_page(), which may locate the folio in
the swapcache. However, since the folio's index has not been updated
to match the destination VMA, do_swap_page() will detect a mismatch.
This can result in two critical issues depending on the system
configuration.
If KSM is disabled, both small and large folios can trigger a BUG
during the add_rmap operation due to:
page_pgoff(folio, page) != linear_page_index(vma, address)
[ 13.336953] page: refcount:6 mapcount:1 mapping:00000000f43db19c index:0xffffaf150 pfn:0x4667c
[ 13.337520] head: order:2 mapcount:1 entire_mapcount:0 nr_pages_mapped:1 pincount:0
[ 13.337716] memcg:ffff00000405f000
[ 13.337849] anon flags: 0x3fffc0000020459(locked|uptodate|dirty|owner_priv_1|head|swapbacked|node=0|zone=0|lastcpupid=0xffff)
[ 13.338630] raw: 03fffc0000020459 ffff80008507b538 ffff80008507b538 ffff000006260361
[ 13.338831] raw: 0000000ffffaf150 0000000000004000 0000000600000000 ffff00000405f000
[ 13.339031] head: 03fffc0000020459 ffff80008507b538 ffff80008507b538 ffff000006260361
[ 13.339204] head: 0000000ffffaf150 0000000000004000 0000000600000000 ffff00000405f000
[ 13.339375] head: 03fffc0000000202 fffffdffc0199f01 ffffffff00000000 0000000000000001
[ 13.339546] head: 0000000000000004 0000000000000000 00000000ffffffff 0000000000000000
[ 13.339736] page dumped because: VM_BUG_ON_PAGE(page_pgoff(folio, page) != linear_page_index(vma, address))
[ 13.340190] ------------[ cut here ]------------
[ 13.340316] kernel BUG at mm/rmap.c:1380!
[ 13.340683] Internal error: Oops - BUG: 00000000f2000800 [#1] PREEMPT SMP
[ 13.340969] Modules linked in:
[ 13.341257] CPU: 1 UID: 0 PID: 107 Comm: a.out Not tainted 6.14.0-rc3-gcf42737e247a-dirty #299
[ 13.341470] Hardware name: linux,dummy-virt (DT)
[ 13.341671] pstate: 60000005 (nZCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 13.341815] pc : __page_check_anon_rmap+0xa0/0xb0
[ 13.341920] lr : __page_check_anon_rmap+0xa0/0xb0
[ 13.342018] sp : ffff80008752bb20
[ 13.342093] x29: ffff80008752bb20 x28: fffffdffc0199f00 x27: 0000000000000001
[ 13.342404] x26: 0000000000000000 x25: 0000000000000001 x24: 0000000000000001
[ 13.342575] x23: 0000ffffaf0d0000 x22: 0000ffffaf0d0000 x21: fffffdffc0199f00
[ 13.342731] x20: fffffdffc0199f00 x19: ffff000006210700 x18: 00000000ffffffff
[ 13.342881] x17: 6c203d2120296567 x16: 6170202c6f696c6f x15: 662866666f67705f
[ 13.343033] x14: 6567617028454741 x13: 2929737365726464 x12: ffff800083728ab0
[ 13.343183] x11: ffff800082996bf8 x10: 0000000000000fd7 x9 : ffff80008011bc40
[ 13.343351] x8 : 0000000000017fe8 x7 : 00000000fffff000 x6 : ffff8000829eebf8
[ 13.343498] x5 : c0000000fffff000 x4 : 0000000000000000 x3 : 0000000000000000
[ 13.343645] x2 : 0000000000000000 x1 : ffff0000062db980 x0 : 000000000000005f
[ 13.343876] Call trace:
[ 13.344045] __page_check_anon_rmap+0xa0/0xb0 (P)
[ 13.344234] folio_add_anon_rmap_ptes+0x22c/0x320
[ 13.344333] do_swap_page+0x1060/0x1400
[ 13.344417] __handl
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
l2tp: close all race conditions in l2tp_tunnel_register()
The code in l2tp_tunnel_register() is racy in several ways:
1. It modifies the tunnel socket _after_ publishing it.
2. It calls setup_udp_tunnel_sock() on an existing socket without
locking.
3. It changes sock lock class on fly, which triggers many syzbot
reports.
This patch amends all of them by moving socket initialization code
before publishing and under sock lock. As suggested by Jakub, the
l2tp lockdep class is not necessary as we can just switch to
bh_lock_sock_nested(). |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix random stack corruption after get_block
When get_block is called with a buffer_head allocated on the stack, such
as do_mpage_readpage, stack corruption due to buffer_head UAF may occur in
the following race condition situation.
<CPU 0> <CPU 1>
mpage_read_folio
<<bh on stack>>
do_mpage_readpage
exfat_get_block
bh_read
__bh_read
get_bh(bh)
submit_bh
wait_on_buffer
...
end_buffer_read_sync
__end_buffer_read_notouch
unlock_buffer
<<keep going>>
...
...
...
...
<<bh is not valid out of mpage_read_folio>>
.
.
another_function
<<variable A on stack>>
put_bh(bh)
atomic_dec(bh->b_count)
* stack corruption here *
This patch returns -EAGAIN if a folio does not have buffers when bh_read
needs to be called. By doing this, the caller can fallback to functions
like block_read_full_folio(), create a buffer_head in the folio, and then
call get_block again.
Let's do not call bh_read() with on-stack buffer_head. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: release flow rule object from commit path
No need to postpone this to the commit release path, since no packets
are walking over this object, this is accessed from control plane only.
This helped uncovered UAF triggered by races with the netlink notifier. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: netlink notifier might race to release objects
commit release path is invoked via call_rcu and it runs lockless to
release the objects after rcu grace period. The netlink notifier handler
might win race to remove objects that the transaction context is still
referencing from the commit release path.
Call rcu_barrier() to ensure pending rcu callbacks run to completion
if the list of transactions to be destroyed is not empty. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Disable idle reallow as part of command/gpint execution
[Why]
Workaroud for a race condition where DMCUB is in the process of
committing to IPS1 during the handshake causing us to miss the
transition into IPS2 and touch the INBOX1 RPTR causing a HW hang.
[How]
Disable the reallow to ensure that we have enough of a gap between entry
and exit and we're not seeing back-to-back wake_and_executes. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Use del_timer_sync in fw reset flow of halting poll
Substitute del_timer() with del_timer_sync() in fw reset polling
deactivation flow, in order to prevent a race condition which occurs
when del_timer() is called and timer is deactivated while another
process is handling the timer interrupt. A situation that led to
the following call trace:
RIP: 0010:run_timer_softirq+0x137/0x420
<IRQ>
recalibrate_cpu_khz+0x10/0x10
ktime_get+0x3e/0xa0
? sched_clock_cpu+0xb/0xc0
__do_softirq+0xf5/0x2ea
irq_exit_rcu+0xc1/0xf0
sysvec_apic_timer_interrupt+0x9e/0xc0
asm_sysvec_apic_timer_interrupt+0x12/0x20
</IRQ> |