CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
gpio: Restrict usage of GPIO chip irq members before initialization
GPIO chip irq members are exposed before they could be completely
initialized and this leads to race conditions.
One such issue was observed for the gc->irq.domain variable which
was accessed through the I2C interface in gpiochip_to_irq() before
it could be initialized by gpiochip_add_irqchip(). This resulted in
Kernel NULL pointer dereference.
Following are the logs for reference :-
kernel: Call Trace:
kernel: gpiod_to_irq+0x53/0x70
kernel: acpi_dev_gpio_irq_get_by+0x113/0x1f0
kernel: i2c_acpi_get_irq+0xc0/0xd0
kernel: i2c_device_probe+0x28a/0x2a0
kernel: really_probe+0xf2/0x460
kernel: RIP: 0010:gpiochip_to_irq+0x47/0xc0
To avoid such scenarios, restrict usage of GPIO chip irq members before
they are completely initialized. |
In the Linux kernel, the following vulnerability has been resolved:
block: null_blk: end timed out poll request
When poll request is timed out, it is removed from the poll list,
but not completed, so the request is leaked, and never get chance
to complete.
Fix the issue by ending it in timeout handler. |
In the Linux kernel, the following vulnerability has been resolved:
net: usb: aqc111: Fix out-of-bounds accesses in RX fixup
aqc111_rx_fixup() contains several out-of-bounds accesses that can be
triggered by a malicious (or defective) USB device, in particular:
- The metadata array (desc_offset..desc_offset+2*pkt_count) can be out of bounds,
causing OOB reads and (on big-endian systems) OOB endianness flips.
- A packet can overlap the metadata array, causing a later OOB
endianness flip to corrupt data used by a cloned SKB that has already
been handed off into the network stack.
- A packet SKB can be constructed whose tail is far beyond its end,
causing out-of-bounds heap data to be considered part of the SKB's
data.
Found doing variant analysis. Tested it with another driver (ax88179_178a), since
I don't have a aqc111 device to test it, but the code looks very similar. |
In the Linux kernel, the following vulnerability has been resolved:
memory: renesas-rpc-if: fix platform-device leak in error path
Make sure to free the flash platform device in the event that
registration fails during probe. |
In the Linux kernel, the following vulnerability has been resolved:
dm integrity: fix memory corruption when tag_size is less than digest size
It is possible to set up dm-integrity in such a way that the
"tag_size" parameter is less than the actual digest size. In this
situation, a part of the digest beyond tag_size is ignored.
In this case, dm-integrity would write beyond the end of the
ic->recalc_tags array and corrupt memory. The corruption happened in
integrity_recalc->integrity_sector_checksum->crypto_shash_final.
Fix this corruption by increasing the tags array so that it has enough
padding at the end to accomodate the loop in integrity_recalc() being
able to write a full digest size for the last member of the tags
array. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: hci_event: Ignore multiple conn complete events
When one of the three connection complete events is received multiple
times for the same handle, the device is registered multiple times which
leads to memory corruptions. Therefore, consequent events for a single
connection are ignored.
The conn->state can hold different values, therefore HCI_CONN_HANDLE_UNSET
is introduced to identify new connections. To make sure the events do not
contain this or another invalid handle HCI_CONN_HANDLE_MAX and checks
are introduced.
Buglink: https://bugzilla.kernel.org/show_bug.cgi?id=215497 |
In the Linux kernel, the following vulnerability has been resolved:
mm/hugetlb: fix missing hugetlb_lock for resv uncharge
There is a recent report on UFFDIO_COPY over hugetlb:
https://lore.kernel.org/all/000000000000ee06de0616177560@google.com/
350: lockdep_assert_held(&hugetlb_lock);
Should be an issue in hugetlb but triggered in an userfault context, where
it goes into the unlikely path where two threads modifying the resv map
together. Mike has a fix in that path for resv uncharge but it looks like
the locking criteria was overlooked: hugetlb_cgroup_uncharge_folio_rsvd()
will update the cgroup pointer, so it requires to be called with the lock
held. |
In the Linux kernel, the following vulnerability has been resolved:
ath11k: pci: fix crash on suspend if board file is not found
Mario reported that the kernel was crashing on suspend if ath11k was not able
to find a board file:
[ 473.693286] PM: Suspending system (s2idle)
[ 473.693291] printk: Suspending console(s) (use no_console_suspend to debug)
[ 474.407787] BUG: unable to handle page fault for address: 0000000000002070
[ 474.407791] #PF: supervisor read access in kernel mode
[ 474.407794] #PF: error_code(0x0000) - not-present page
[ 474.407798] PGD 0 P4D 0
[ 474.407801] Oops: 0000 [#1] PREEMPT SMP NOPTI
[ 474.407805] CPU: 2 PID: 2350 Comm: kworker/u32:14 Tainted: G W 5.16.0 #248
[...]
[ 474.407868] Call Trace:
[ 474.407870] <TASK>
[ 474.407874] ? _raw_spin_lock_irqsave+0x2a/0x60
[ 474.407882] ? lock_timer_base+0x72/0xa0
[ 474.407889] ? _raw_spin_unlock_irqrestore+0x29/0x3d
[ 474.407892] ? try_to_del_timer_sync+0x54/0x80
[ 474.407896] ath11k_dp_rx_pktlog_stop+0x49/0xc0 [ath11k]
[ 474.407912] ath11k_core_suspend+0x34/0x130 [ath11k]
[ 474.407923] ath11k_pci_pm_suspend+0x1b/0x50 [ath11k_pci]
[ 474.407928] pci_pm_suspend+0x7e/0x170
[ 474.407935] ? pci_pm_freeze+0xc0/0xc0
[ 474.407939] dpm_run_callback+0x4e/0x150
[ 474.407947] __device_suspend+0x148/0x4c0
[ 474.407951] async_suspend+0x20/0x90
dmesg-efi-164255130401001:
Oops#1 Part1
[ 474.407955] async_run_entry_fn+0x33/0x120
[ 474.407959] process_one_work+0x220/0x3f0
[ 474.407966] worker_thread+0x4a/0x3d0
[ 474.407971] kthread+0x17a/0x1a0
[ 474.407975] ? process_one_work+0x3f0/0x3f0
[ 474.407979] ? set_kthread_struct+0x40/0x40
[ 474.407983] ret_from_fork+0x22/0x30
[ 474.407991] </TASK>
The issue here is that board file loading happens after ath11k_pci_probe()
succesfully returns (ath11k initialisation happends asynchronously) and the
suspend handler is still enabled, of course failing as ath11k is not properly
initialised. Fix this by checking ATH11K_FLAG_QMI_FAIL during both suspend and
resume.
Tested-on: WCN6855 hw2.0 PCI WLAN.HSP.1.1-03003-QCAHSPSWPL_V1_V2_SILICONZ_LITE-2 |
In the Linux kernel, the following vulnerability has been resolved:
scsi: pm8001: Fix tag leaks on error
In pm8001_chip_set_dev_state_req(), pm8001_chip_fw_flash_update_req(),
pm80xx_chip_phy_ctl_req() and pm8001_chip_reg_dev_req() add missing calls
to pm8001_tag_free() to free the allocated tag when pm8001_mpi_build_cmd()
fails.
Similarly, in pm8001_exec_internal_task_abort(), if the chip ->task_abort
method fails, the tag allocated for the abort request task must be
freed. Add the missing call to pm8001_tag_free(). |
In the Linux kernel, the following vulnerability has been resolved:
scsi: pm8001: Fix task leak in pm8001_send_abort_all()
In pm8001_send_abort_all(), make sure to free the allocated sas task
if pm8001_tag_alloc() or pm8001_mpi_build_cmd() fail. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: conntrack: revisit gc autotuning
as of commit 4608fdfc07e1
("netfilter: conntrack: collect all entries in one cycle")
conntrack gc was changed to run every 2 minutes.
On systems where conntrack hash table is set to large value, most evictions
happen from gc worker rather than the packet path due to hash table
distribution.
This causes netlink event overflows when events are collected.
This change collects average expiry of scanned entries and
reschedules to the average remaining value, within 1 to 60 second interval.
To avoid event overflows, reschedule after each bucket and add a
limit for both run time and number of evictions per run.
If more entries have to be evicted, reschedule and restart 1 jiffy
into the future. |
In the Linux kernel, the following vulnerability has been resolved:
ceph: fix inode reference leakage in ceph_get_snapdir()
The ceph_get_inode() will search for or insert a new inode into the
hash for the given vino, and return a reference to it. If new is
non-NULL, its reference is consumed.
We should release the reference when in error handing cases. |
In the Linux kernel, the following vulnerability has been resolved:
arch/arm64: Fix topology initialization for core scheduling
Arm64 systems rely on store_cpu_topology() to call update_siblings_masks()
to transfer the toplogy to the various cpu masks. This needs to be done
before the call to notify_cpu_starting() which tells the scheduler about
each cpu found, otherwise the core scheduling data structures are setup
in a way that does not match the actual topology.
With smt_mask not setup correctly we bail on `cpumask_weight(smt_mask) == 1`
for !leaders in:
notify_cpu_starting()
cpuhp_invoke_callback_range()
sched_cpu_starting()
sched_core_cpu_starting()
which leads to rq->core not being correctly set for !leader-rq's.
Without this change stress-ng (which enables core scheduling in its prctl
tests in newer versions -- i.e. with PR_SCHED_CORE support) causes a warning
and then a crash (trimmed for legibility):
[ 1853.805168] ------------[ cut here ]------------
[ 1853.809784] task_rq(b)->core != rq->core
[ 1853.809792] WARNING: CPU: 117 PID: 0 at kernel/sched/fair.c:11102 cfs_prio_less+0x1b4/0x1c4
...
[ 1854.015210] Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
...
[ 1854.231256] Call trace:
[ 1854.233689] pick_next_task+0x3dc/0x81c
[ 1854.237512] __schedule+0x10c/0x4cc
[ 1854.240988] schedule_idle+0x34/0x54 |
In the Linux kernel, the following vulnerability has been resolved:
IB/rdmavt: add lock to call to rvt_error_qp to prevent a race condition
The documentation of the function rvt_error_qp says both r_lock and s_lock
need to be held when calling that function. It also asserts using lockdep
that both of those locks are held. However, the commit I referenced in
Fixes accidentally makes the call to rvt_error_qp in rvt_ruc_loopback no
longer covered by r_lock. This results in the lockdep assertion failing
and also possibly in a race condition. |
In the Linux kernel, the following vulnerability has been resolved:
dpaa2-ptp: Fix refcount leak in dpaa2_ptp_probe
This node pointer is returned by of_find_compatible_node() with
refcount incremented. Calling of_node_put() to aovid the refcount leak. |
In the Linux kernel, the following vulnerability has been resolved:
net: openvswitch: fix leak of nested actions
While parsing user-provided actions, openvswitch module may dynamically
allocate memory and store pointers in the internal copy of the actions.
So this memory has to be freed while destroying the actions.
Currently there are only two such actions: ct() and set(). However,
there are many actions that can hold nested lists of actions and
ovs_nla_free_flow_actions() just jumps over them leaking the memory.
For example, removal of the flow with the following actions will lead
to a leak of the memory allocated by nf_ct_tmpl_alloc():
actions:clone(ct(commit),0)
Non-freed set() action may also leak the 'dst' structure for the
tunnel info including device references.
Under certain conditions with a high rate of flow rotation that may
cause significant memory leak problem (2MB per second in reporter's
case). The problem is also hard to mitigate, because the user doesn't
have direct control over the datapath flows generated by OVS.
Fix that by iterating over all the nested actions and freeing
everything that needs to be freed recursively.
New build time assertion should protect us from this problem if new
actions will be added in the future.
Unfortunately, openvswitch module doesn't use NLA_F_NESTED, so all
attributes has to be explicitly checked. sample() and clone() actions
are mixing extra attributes into the user-provided action list. That
prevents some code generalization too. |
In the Linux kernel, the following vulnerability has been resolved:
firmware: qcom: uefisecapp: Fix memory related IO errors and crashes
It turns out that while the QSEECOM APP_SEND command has specific fields
for request and response buffers, uefisecapp expects them both to be in
a single memory region. Failure to adhere to this has (so far) resulted
in either no response being written to the response buffer (causing an
EIO to be emitted down the line), the SCM call to fail with EINVAL
(i.e., directly from TZ/firmware), or the device to be hard-reset.
While this issue can be triggered deterministically, in the current form
it seems to happen rather sporadically (which is why it has gone
unnoticed during earlier testing). This is likely due to the two
kzalloc() calls (for request and response) being directly after each
other. Which means that those likely return consecutive regions most of
the time, especially when not much else is going on in the system.
Fix this by allocating a single memory region for both request and
response buffers, properly aligning both structs inside it. This
unfortunately also means that the qcom_scm_qseecom_app_send() interface
needs to be restructured, as it should no longer map the DMA regions
separately. Therefore, move the responsibility of DMA allocation (or
mapping) to the caller. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: RFCOMM: Fix not validating setsockopt user input
syzbot reported rfcomm_sock_setsockopt_old() is copying data without
checking user input length.
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset
include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr
include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in rfcomm_sock_setsockopt_old
net/bluetooth/rfcomm/sock.c:632 [inline]
BUG: KASAN: slab-out-of-bounds in rfcomm_sock_setsockopt+0x893/0xa70
net/bluetooth/rfcomm/sock.c:673
Read of size 4 at addr ffff8880209a8bc3 by task syz-executor632/5064 |
In the Linux kernel, the following vulnerability has been resolved:
mm/slub: Avoid list corruption when removing a slab from the full list
Boot with slub_debug=UFPZ.
If allocated object failed in alloc_consistency_checks, all objects of
the slab will be marked as used, and then the slab will be removed from
the partial list.
When an object belonging to the slab got freed later, the remove_full()
function is called. Because the slab is neither on the partial list nor
on the full list, it eventually lead to a list corruption (actually a
list poison being detected).
So we need to mark and isolate the slab page with metadata corruption,
do not put it back in circulation.
Because the debug caches avoid all the fastpaths, reusing the frozen bit
to mark slab page with metadata corruption seems to be fine.
[ 4277.385669] list_del corruption, ffffea00044b3e50->next is LIST_POISON1 (dead000000000100)
[ 4277.387023] ------------[ cut here ]------------
[ 4277.387880] kernel BUG at lib/list_debug.c:56!
[ 4277.388680] invalid opcode: 0000 [#1] PREEMPT SMP PTI
[ 4277.389562] CPU: 5 PID: 90 Comm: kworker/5:1 Kdump: loaded Tainted: G OE 6.6.1-1 #1
[ 4277.392113] Workqueue: xfs-inodegc/vda1 xfs_inodegc_worker [xfs]
[ 4277.393551] RIP: 0010:__list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.394518] Code: 48 91 82 e8 37 f9 9a ff 0f 0b 48 89 fe 48 c7 c7 28 49 91 82 e8 26 f9 9a ff 0f 0b 48 89 fe 48 c7 c7 58 49 91
[ 4277.397292] RSP: 0018:ffffc90000333b38 EFLAGS: 00010082
[ 4277.398202] RAX: 000000000000004e RBX: ffffea00044b3e50 RCX: 0000000000000000
[ 4277.399340] RDX: 0000000000000002 RSI: ffffffff828f8715 RDI: 00000000ffffffff
[ 4277.400545] RBP: ffffea00044b3e40 R08: 0000000000000000 R09: ffffc900003339f0
[ 4277.401710] R10: 0000000000000003 R11: ffffffff82d44088 R12: ffff888112cf9910
[ 4277.402887] R13: 0000000000000001 R14: 0000000000000001 R15: ffff8881000424c0
[ 4277.404049] FS: 0000000000000000(0000) GS:ffff88842fd40000(0000) knlGS:0000000000000000
[ 4277.405357] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 4277.406389] CR2: 00007f2ad0b24000 CR3: 0000000102a3a006 CR4: 00000000007706e0
[ 4277.407589] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 4277.408780] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 4277.410000] PKRU: 55555554
[ 4277.410645] Call Trace:
[ 4277.411234] <TASK>
[ 4277.411777] ? die+0x32/0x80
[ 4277.412439] ? do_trap+0xd6/0x100
[ 4277.413150] ? __list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.414158] ? do_error_trap+0x6a/0x90
[ 4277.414948] ? __list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.415915] ? exc_invalid_op+0x4c/0x60
[ 4277.416710] ? __list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.417675] ? asm_exc_invalid_op+0x16/0x20
[ 4277.418482] ? __list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.419466] ? __list_del_entry_valid_or_report+0x7b/0xc0
[ 4277.420410] free_to_partial_list+0x515/0x5e0
[ 4277.421242] ? xfs_iext_remove+0x41a/0xa10 [xfs]
[ 4277.422298] xfs_iext_remove+0x41a/0xa10 [xfs]
[ 4277.423316] ? xfs_inodegc_worker+0xb4/0x1a0 [xfs]
[ 4277.424383] xfs_bmap_del_extent_delay+0x4fe/0x7d0 [xfs]
[ 4277.425490] __xfs_bunmapi+0x50d/0x840 [xfs]
[ 4277.426445] xfs_itruncate_extents_flags+0x13a/0x490 [xfs]
[ 4277.427553] xfs_inactive_truncate+0xa3/0x120 [xfs]
[ 4277.428567] xfs_inactive+0x22d/0x290 [xfs]
[ 4277.429500] xfs_inodegc_worker+0xb4/0x1a0 [xfs]
[ 4277.430479] process_one_work+0x171/0x340
[ 4277.431227] worker_thread+0x277/0x390
[ 4277.431962] ? __pfx_worker_thread+0x10/0x10
[ 4277.432752] kthread+0xf0/0x120
[ 4277.433382] ? __pfx_kthread+0x10/0x10
[ 4277.434134] ret_from_fork+0x2d/0x50
[ 4277.434837] ? __pfx_kthread+0x10/0x10
[ 4277.435566] ret_from_fork_asm+0x1b/0x30
[ 4277.436280] </TASK> |
In the Linux kernel, the following vulnerability has been resolved:
media: i2c: tc358743: Fix crash in the probe error path when using polling
If an error occurs in the probe() function, we should remove the polling
timer that was alarmed earlier, otherwise the timer is called with
arguments that are already freed, which results in a crash.
------------[ cut here ]------------
WARNING: CPU: 3 PID: 0 at kernel/time/timer.c:1830 __run_timers+0x244/0x268
Modules linked in:
CPU: 3 UID: 0 PID: 0 Comm: swapper/3 Not tainted 6.11.0 #226
Hardware name: Diasom DS-RK3568-SOM-EVB (DT)
pstate: 804000c9 (Nzcv daIF +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : __run_timers+0x244/0x268
lr : __run_timers+0x1d4/0x268
sp : ffffff80eff2baf0
x29: ffffff80eff2bb50 x28: 7fffffffffffffff x27: ffffff80eff2bb00
x26: ffffffc080f669c0 x25: ffffff80efef6bf0 x24: ffffff80eff2bb00
x23: 0000000000000000 x22: dead000000000122 x21: 0000000000000000
x20: ffffff80efef6b80 x19: ffffff80041c8bf8 x18: ffffffffffffffff
x17: ffffffc06f146000 x16: ffffff80eff27dc0 x15: 000000000000003e
x14: 0000000000000000 x13: 00000000000054da x12: 0000000000000000
x11: 00000000000639c0 x10: 000000000000000c x9 : 0000000000000009
x8 : ffffff80eff2cb40 x7 : ffffff80eff2cb40 x6 : ffffff8002bee480
x5 : ffffffc080cb2220 x4 : ffffffc080cb2150 x3 : 00000000000f4240
x2 : 0000000000000102 x1 : ffffff80eff2bb00 x0 : ffffff80041c8bf0
Call trace:
__run_timers+0x244/0x268
timer_expire_remote+0x50/0x68
tmigr_handle_remote+0x388/0x39c
run_timer_softirq+0x38/0x44
handle_softirqs+0x138/0x298
__do_softirq+0x14/0x20
____do_softirq+0x10/0x1c
call_on_irq_stack+0x24/0x4c
do_softirq_own_stack+0x1c/0x2c
irq_exit_rcu+0x9c/0xcc
el1_interrupt+0x48/0xc0
el1h_64_irq_handler+0x18/0x24
el1h_64_irq+0x7c/0x80
default_idle_call+0x34/0x68
do_idle+0x23c/0x294
cpu_startup_entry+0x38/0x3c
secondary_start_kernel+0x128/0x160
__secondary_switched+0xb8/0xbc
---[ end trace 0000000000000000 ]--- |