Search

Search Results (309758 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2023-53225 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: spi: imx: Don't skip cleanup in remove's error path Returning early in a platform driver's remove callback is wrong. In this case the dma resources are not released in the error path. this is never retried later and so this is a permanent leak. To fix this, only skip hardware disabling if waking the device fails.
CVE-2023-53227 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: ubifs: dirty_cow_znode: Fix memleak in error handling path Following process will cause a memleak for copied up znode: dirty_cow_znode zn = copy_znode(c, znode); err = insert_old_idx(c, zbr->lnum, zbr->offs); if (unlikely(err)) return ERR_PTR(err); // No one refers to zn. Fix it by adding copied znode back to tnc, then it will be freed by ubifs_destroy_tnc_subtree() while closing tnc. Fetch a reproducer in [Link].
CVE-2023-53228 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: drop redundant sched job cleanup when cs is aborted Once command submission failed due to userptr invalidation in amdgpu_cs_submit, legacy code will perform cleanup of scheduler job. However, it's not needed at all, as former commit has integrated job cleanup stuff into amdgpu_job_free. Otherwise, because of double free, a NULL pointer dereference will occur in such scenario. Bug: https://gitlab.freedesktop.org/drm/amd/-/issues/2457
CVE-2023-53229 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: fix invalid drv_sta_pre_rcu_remove calls for non-uploaded sta Avoid potential data corruption issues caused by uninitialized driver private data structures.
CVE-2023-53230 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix warning in cifs_smb3_do_mount() This fixes the following warning reported by kernel test robot fs/smb/client/cifsfs.c:982 cifs_smb3_do_mount() warn: possible memory leak of 'cifs_sb'
CVE-2023-53232 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: mt76: mt7921: fix kernel panic by accessing unallocated eeprom.data The MT7921 driver no longer uses eeprom.data, but the relevant code has not been removed completely since commit 16d98b548365 ("mt76: mt7921: rely on mcu_get_nic_capability"). This could result in potential invalid memory access. To fix the kernel panic issue in mt7921, it is necessary to avoid accessing unallocated eeprom.data which can lead to invalid memory access. Furthermore, it is possible to entirely eliminate the mt7921_mcu_parse_eeprom function and solely depend on mt7921_mcu_parse_response to divide the RxD header. [2.702735] BUG: kernel NULL pointer dereference, address: 0000000000000550 [2.702740] #PF: supervisor write access in kernel mode [2.702741] #PF: error_code(0x0002) - not-present page [2.702743] PGD 0 P4D 0 [2.702747] Oops: 0002 [#1] PREEMPT SMP NOPTI [2.702755] RIP: 0010:mt7921_mcu_parse_response+0x147/0x170 [mt7921_common] [2.702758] RSP: 0018:ffffae7c00fef828 EFLAGS: 00010286 [2.702760] RAX: ffffa367f57be024 RBX: ffffa367cc7bf500 RCX: 0000000000000000 [2.702762] RDX: 0000000000000550 RSI: 0000000000000000 RDI: ffffa367cc7bf500 [2.702763] RBP: ffffae7c00fef840 R08: ffffa367cb167000 R09: 0000000000000005 [2.702764] R10: 0000000000000000 R11: ffffffffc04702e4 R12: ffffa367e8329f40 [2.702766] R13: 0000000000000000 R14: 0000000000000001 R15: ffffa367e8329f40 [2.702768] FS: 000079ee6cf20c40(0000) GS:ffffa36b2f940000(0000) knlGS:0000000000000000 [2.702769] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [2.702775] CR2: 0000000000000550 CR3: 00000001233c6004 CR4: 0000000000770ee0 [2.702776] PKRU: 55555554 [2.702777] Call Trace: [2.702782] mt76_mcu_skb_send_and_get_msg+0xc3/0x11e [mt76 <HASH:1bc4 5>] [2.702785] mt7921_run_firmware+0x241/0x853 [mt7921_common <HASH:6a2f 6>] [2.702789] mt7921e_mcu_init+0x2b/0x56 [mt7921e <HASH:d290 7>] [2.702792] mt7921_register_device+0x2eb/0x5a5 [mt7921_common <HASH:6a2f 6>] [2.702795] ? mt7921_irq_tasklet+0x1d4/0x1d4 [mt7921e <HASH:d290 7>] [2.702797] mt7921_pci_probe+0x2d6/0x319 [mt7921e <HASH:d290 7>] [2.702799] pci_device_probe+0x9f/0x12a
CVE-2023-53233 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: net/smc: fix deadlock triggered by cancel_delayed_work_syn() The following LOCKDEP was detected: Workqueue: events smc_lgr_free_work [smc] WARNING: possible circular locking dependency detected 6.1.0-20221027.rc2.git8.56bc5b569087.300.fc36.s390x+debug #1 Not tainted ------------------------------------------------------ kworker/3:0/176251 is trying to acquire lock: 00000000f1467148 ((wq_completion)smc_tx_wq-00000000#2){+.+.}-{0:0}, at: __flush_workqueue+0x7a/0x4f0 but task is already holding lock: 0000037fffe97dc8 ((work_completion)(&(&lgr->free_work)->work)){+.+.}-{0:0}, at: process_one_work+0x232/0x730 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #4 ((work_completion)(&(&lgr->free_work)->work)){+.+.}-{0:0}: __lock_acquire+0x58e/0xbd8 lock_acquire.part.0+0xe2/0x248 lock_acquire+0xac/0x1c8 __flush_work+0x76/0xf0 __cancel_work_timer+0x170/0x220 __smc_lgr_terminate.part.0+0x34/0x1c0 [smc] smc_connect_rdma+0x15e/0x418 [smc] __smc_connect+0x234/0x480 [smc] smc_connect+0x1d6/0x230 [smc] __sys_connect+0x90/0xc0 __do_sys_socketcall+0x186/0x370 __do_syscall+0x1da/0x208 system_call+0x82/0xb0 -> #3 (smc_client_lgr_pending){+.+.}-{3:3}: __lock_acquire+0x58e/0xbd8 lock_acquire.part.0+0xe2/0x248 lock_acquire+0xac/0x1c8 __mutex_lock+0x96/0x8e8 mutex_lock_nested+0x32/0x40 smc_connect_rdma+0xa4/0x418 [smc] __smc_connect+0x234/0x480 [smc] smc_connect+0x1d6/0x230 [smc] __sys_connect+0x90/0xc0 __do_sys_socketcall+0x186/0x370 __do_syscall+0x1da/0x208 system_call+0x82/0xb0 -> #2 (sk_lock-AF_SMC){+.+.}-{0:0}: __lock_acquire+0x58e/0xbd8 lock_acquire.part.0+0xe2/0x248 lock_acquire+0xac/0x1c8 lock_sock_nested+0x46/0xa8 smc_tx_work+0x34/0x50 [smc] process_one_work+0x30c/0x730 worker_thread+0x62/0x420 kthread+0x138/0x150 __ret_from_fork+0x3c/0x58 ret_from_fork+0xa/0x40 -> #1 ((work_completion)(&(&smc->conn.tx_work)->work)){+.+.}-{0:0}: __lock_acquire+0x58e/0xbd8 lock_acquire.part.0+0xe2/0x248 lock_acquire+0xac/0x1c8 process_one_work+0x2bc/0x730 worker_thread+0x62/0x420 kthread+0x138/0x150 __ret_from_fork+0x3c/0x58 ret_from_fork+0xa/0x40 -> #0 ((wq_completion)smc_tx_wq-00000000#2){+.+.}-{0:0}: check_prev_add+0xd8/0xe88 validate_chain+0x70c/0xb20 __lock_acquire+0x58e/0xbd8 lock_acquire.part.0+0xe2/0x248 lock_acquire+0xac/0x1c8 __flush_workqueue+0xaa/0x4f0 drain_workqueue+0xaa/0x158 destroy_workqueue+0x44/0x2d8 smc_lgr_free+0x9e/0xf8 [smc] process_one_work+0x30c/0x730 worker_thread+0x62/0x420 kthread+0x138/0x150 __ret_from_fork+0x3c/0x58 ret_from_fork+0xa/0x40 other info that might help us debug this: Chain exists of: (wq_completion)smc_tx_wq-00000000#2 --> smc_client_lgr_pending --> (work_completion)(&(&lgr->free_work)->work) Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock((work_completion)(&(&lgr->free_work)->work)); lock(smc_client_lgr_pending); lock((work_completion) (&(&lgr->free_work)->work)); lock((wq_completion)smc_tx_wq-00000000#2); *** DEADLOCK *** 2 locks held by kworker/3:0/176251: #0: 0000000080183548 ((wq_completion)events){+.+.}-{0:0}, at: process_one_work+0x232/0x730 #1: 0000037fffe97dc8 ((work_completion) (&(&lgr->free_work)->work)){+.+.}-{0:0}, at: process_one_work+0x232/0x730 stack backtr ---truncated---
CVE-2023-53234 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: watchdog: Fix kmemleak in watchdog_cdev_register kmemleak reports memory leaks in watchdog_dev_register, as follows: unreferenced object 0xffff888116233000 (size 2048): comm ""modprobe"", pid 28147, jiffies 4353426116 (age 61.741s) hex dump (first 32 bytes): 80 fa b9 05 81 88 ff ff 08 30 23 16 81 88 ff ff .........0#..... 08 30 23 16 81 88 ff ff 00 00 00 00 00 00 00 00 .0#............. backtrace: [<000000007f001ffd>] __kmem_cache_alloc_node+0x157/0x220 [<000000006a389304>] kmalloc_trace+0x21/0x110 [<000000008d640eea>] watchdog_dev_register+0x4e/0x780 [watchdog] [<0000000053c9f248>] __watchdog_register_device+0x4f0/0x680 [watchdog] [<00000000b2979824>] watchdog_register_device+0xd2/0x110 [watchdog] [<000000001f730178>] 0xffffffffc10880ae [<000000007a1a8bcc>] do_one_initcall+0xcb/0x4d0 [<00000000b98be325>] do_init_module+0x1ca/0x5f0 [<0000000046d08e7c>] load_module+0x6133/0x70f0 ... unreferenced object 0xffff888105b9fa80 (size 16): comm ""modprobe"", pid 28147, jiffies 4353426116 (age 61.741s) hex dump (first 16 bytes): 77 61 74 63 68 64 6f 67 31 00 b9 05 81 88 ff ff watchdog1....... backtrace: [<000000007f001ffd>] __kmem_cache_alloc_node+0x157/0x220 [<00000000486ab89b>] __kmalloc_node_track_caller+0x44/0x1b0 [<000000005a39aab0>] kvasprintf+0xb5/0x140 [<0000000024806f85>] kvasprintf_const+0x55/0x180 [<000000009276cb7f>] kobject_set_name_vargs+0x56/0x150 [<00000000a92e820b>] dev_set_name+0xab/0xe0 [<00000000cec812c6>] watchdog_dev_register+0x285/0x780 [watchdog] [<0000000053c9f248>] __watchdog_register_device+0x4f0/0x680 [watchdog] [<00000000b2979824>] watchdog_register_device+0xd2/0x110 [watchdog] [<000000001f730178>] 0xffffffffc10880ae [<000000007a1a8bcc>] do_one_initcall+0xcb/0x4d0 [<00000000b98be325>] do_init_module+0x1ca/0x5f0 [<0000000046d08e7c>] load_module+0x6133/0x70f0 ... The reason is that put_device is not be called if cdev_device_add fails and wdd->id != 0. watchdog_cdev_register wd_data = kzalloc [1] err = dev_set_name [2] .. err = cdev_device_add if (err) { if (wdd->id == 0) { // wdd->id != 0 .. } return err; // [1],[2] would be leaked To fix it, call put_device in all wdd->id cases.
CVE-2023-53236 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: iommufd: Do not corrupt the pfn list when doing batch carry If batch->end is 0 then setting npfns[0] before computing the new value of pfns will fail to adjust the pfn and result in various page accounting corruptions. It should be ordered after. This seems to result in various kinds of page meta-data corruption related failures: WARNING: CPU: 1 PID: 527 at mm/gup.c:75 try_grab_folio+0x503/0x740 Modules linked in: CPU: 1 PID: 527 Comm: repro Not tainted 6.3.0-rc2-eeac8ede1755+ #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:try_grab_folio+0x503/0x740 Code: e3 01 48 89 de e8 6d c1 dd ff 48 85 db 0f 84 7c fe ff ff e8 4f bf dd ff 49 8d 47 ff 48 89 45 d0 e9 73 fe ff ff e8 3d bf dd ff <0f> 0b 31 db e9 d0 fc ff ff e8 2f bf dd ff 48 8b 5d c8 31 ff 48 89 RSP: 0018:ffffc90000f37908 EFLAGS: 00010046 RAX: 0000000000000000 RBX: 00000000fffffc02 RCX: ffffffff81504c26 RDX: 0000000000000000 RSI: ffff88800d030000 RDI: 0000000000000002 RBP: ffffc90000f37948 R08: 000000000003ca24 R09: 0000000000000008 R10: 000000000003ca00 R11: 0000000000000023 R12: ffffea000035d540 R13: 0000000000000001 R14: 0000000000000000 R15: ffffea000035d540 FS: 00007fecbf659740(0000) GS:ffff88807dd00000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00000000200011c3 CR3: 000000000ef66006 CR4: 0000000000770ee0 PKRU: 55555554 Call Trace: <TASK> internal_get_user_pages_fast+0xd32/0x2200 pin_user_pages_fast+0x65/0x90 pfn_reader_user_pin+0x376/0x390 pfn_reader_next+0x14a/0x7b0 pfn_reader_first+0x140/0x1b0 iopt_area_fill_domain+0x74/0x210 iopt_table_add_domain+0x30e/0x6e0 iommufd_device_selftest_attach+0x7f/0x140 iommufd_test+0x10ff/0x16f0 iommufd_fops_ioctl+0x206/0x330 __x64_sys_ioctl+0x10e/0x160 do_syscall_64+0x3b/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc
CVE-2023-53237 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix amdgpu_irq_put call trace in gmc_v11_0_hw_fini The gmc.ecc_irq is enabled by firmware per IFWI setting, and the host driver is not privileged to enable/disable the interrupt. So, it is meaningless to use the amdgpu_irq_put function in gmc_v11_0_hw_fini, which also leads to the call trace. [ 102.980303] Call Trace: [ 102.980303] <TASK> [ 102.980304] gmc_v11_0_hw_fini+0x54/0x90 [amdgpu] [ 102.980357] gmc_v11_0_suspend+0xe/0x20 [amdgpu] [ 102.980409] amdgpu_device_ip_suspend_phase2+0x240/0x460 [amdgpu] [ 102.980459] amdgpu_device_ip_suspend+0x3d/0x80 [amdgpu] [ 102.980520] amdgpu_device_pre_asic_reset+0xd9/0x490 [amdgpu] [ 102.980573] amdgpu_device_gpu_recover.cold+0x548/0xce6 [amdgpu] [ 102.980687] amdgpu_debugfs_reset_work+0x4c/0x70 [amdgpu] [ 102.980740] process_one_work+0x21f/0x3f0 [ 102.980741] worker_thread+0x200/0x3e0 [ 102.980742] ? process_one_work+0x3f0/0x3f0 [ 102.980743] kthread+0xfd/0x130 [ 102.980743] ? kthread_complete_and_exit+0x20/0x20 [ 102.980744] ret_from_fork+0x22/0x30
CVE-2023-53238 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: phy: hisilicon: Fix an out of bounds check in hisi_inno_phy_probe() The size of array 'priv->ports[]' is INNO_PHY_PORT_NUM. In the for loop, 'i' is used as the index for array 'priv->ports[]' with a check (i > INNO_PHY_PORT_NUM) which indicates that INNO_PHY_PORT_NUM is allowed value for 'i' in the same loop. This > comparison needs to be changed to >=, otherwise it potentially leads to an out of bounds write on the next iteration through the loop
CVE-2023-53241 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: nfsd: call op_release, even when op_func returns an error For ops with "trivial" replies, nfsd4_encode_operation will shortcut most of the encoding work and skip to just marshalling up the status. One of the things it skips is calling op_release. This could cause a memory leak in the layoutget codepath if there is an error at an inopportune time. Have the compound processing engine always call op_release, even when op_func sets an error in op->status. With this change, we also need nfsd4_block_get_device_info_scsi to set the gd_device pointer to NULL on error to avoid a double free.
CVE-2023-53242 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: thermal/drivers/hisi: Drop second sensor hi3660 The commit 74c8e6bffbe1 ("driver core: Add __alloc_size hint to devm allocators") exposes a panic "BRK handler: Fatal exception" on the hi3660_thermal_probe funciton. This is because the function allocates memory for only one sensors array entry, but tries to fill up a second one. Fix this by removing the unneeded second access.
CVE-2023-53244 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: media: pci: tw68: Fix null-ptr-deref bug in buf prepare and finish When the driver calls tw68_risc_buffer() to prepare the buffer, the function call dma_alloc_coherent may fail, resulting in a empty buffer buf->cpu. Later when we free the buffer or access the buffer, null ptr deref is triggered. This bug is similar to the following one: https://git.linuxtv.org/media_stage.git/commit/?id=2b064d91440b33fba5b452f2d1b31f13ae911d71. We believe the bug can be also dynamically triggered from user side. Similarly, we fix this by checking the return value of tw68_risc_buffer() and the value of buf->cpu before buffer free.
CVE-2023-53245 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: scsi: storvsc: Fix handling of virtual Fibre Channel timeouts Hyper-V provides the ability to connect Fibre Channel LUNs to the host system and present them in a guest VM as a SCSI device. I/O to the vFC device is handled by the storvsc driver. The storvsc driver includes a partial integration with the FC transport implemented in the generic portion of the Linux SCSI subsystem so that FC attributes can be displayed in /sys. However, the partial integration means that some aspects of vFC don't work properly. Unfortunately, a full and correct integration isn't practical because of limitations in what Hyper-V provides to the guest. In particular, in the context of Hyper-V storvsc, the FC transport timeout function fc_eh_timed_out() causes a kernel panic because it can't find the rport and dereferences a NULL pointer. The original patch that added the call from storvsc_eh_timed_out() to fc_eh_timed_out() is faulty in this regard. In many cases a timeout is due to a transient condition, so the situation can be improved by just continuing to wait like with other I/O requests issued by storvsc, and avoiding the guaranteed panic. For a permanent failure, continuing to wait may result in a hung thread instead of a panic, which again may be better. So fix the panic by removing the storvsc call to fc_eh_timed_out(). This allows storvsc to keep waiting for a response. The change has been tested by users who experienced a panic in fc_eh_timed_out() due to transient timeouts, and it solves their problem. In the future we may want to deprecate the vFC functionality in storvsc since it can't be fully fixed. But it has current users for whom it is working well enough, so it should probably stay for a while longer.
CVE-2023-53246 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: cifs: fix DFS traversal oops without CONFIG_CIFS_DFS_UPCALL When compiled with CONFIG_CIFS_DFS_UPCALL disabled, cifs_dfs_d_automount is NULL. cifs.ko logic for mapping CIFS_FATTR_DFS_REFERRAL attributes to S_AUTOMOUNT and corresponding dentry flags is retained regardless of CONFIG_CIFS_DFS_UPCALL, leading to a NULL pointer dereference in VFS follow_automount() when traversing a DFS referral link: BUG: kernel NULL pointer dereference, address: 0000000000000000 ... Call Trace: <TASK> __traverse_mounts+0xb5/0x220 ? cifs_revalidate_mapping+0x65/0xc0 [cifs] step_into+0x195/0x610 ? lookup_fast+0xe2/0xf0 path_lookupat+0x64/0x140 filename_lookup+0xc2/0x140 ? __create_object+0x299/0x380 ? kmem_cache_alloc+0x119/0x220 ? user_path_at_empty+0x31/0x50 user_path_at_empty+0x31/0x50 __x64_sys_chdir+0x2a/0xd0 ? exit_to_user_mode_prepare+0xca/0x100 do_syscall_64+0x42/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc This fix adds an inline cifs_dfs_d_automount() {return -EREMOTE} handler when CONFIG_CIFS_DFS_UPCALL is disabled. An alternative would be to avoid flagging S_AUTOMOUNT, etc. without CONFIG_CIFS_DFS_UPCALL. This approach was chosen as it provides more control over the error path.
CVE-2023-53249 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: clk: imx: clk-imx8mn: fix memory leak in imx8mn_clocks_probe Use devm_of_iomap() instead of of_iomap() to automatically handle the unused ioremap region. If any error occurs, regions allocated by kzalloc() will leak, but using devm_kzalloc() instead will automatically free the memory using devm_kfree().
CVE-2023-53250 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: firmware: dmi-sysfs: Fix null-ptr-deref in dmi_sysfs_register_handle KASAN reported a null-ptr-deref error: KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f] CPU: 0 PID: 1373 Comm: modprobe Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) RIP: 0010:dmi_sysfs_entry_release ... Call Trace: <TASK> kobject_put dmi_sysfs_register_handle (drivers/firmware/dmi-sysfs.c:540) dmi_sysfs dmi_decode_table (drivers/firmware/dmi_scan.c:133) dmi_walk (drivers/firmware/dmi_scan.c:1115) dmi_sysfs_init (drivers/firmware/dmi-sysfs.c:149) dmi_sysfs do_one_initcall (init/main.c:1296) ... Kernel panic - not syncing: Fatal exception Kernel Offset: 0x4000000 from 0xffffffff81000000 ---[ end Kernel panic - not syncing: Fatal exception ]--- It is because previous patch added kobject_put() to release the memory which will call dmi_sysfs_entry_release() and list_del(). However, list_add_tail(entry->list) is called after the error block, so the list_head is uninitialized and cannot be deleted. Move error handling to after list_add_tail to fix this.
CVE-2023-53251 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: pcie: fix NULL pointer dereference in iwl_pcie_irq_rx_msix_handler() rxq can be NULL only when trans_pcie->rxq is NULL and entry->entry is zero. For the case when entry->entry is not equal to 0, rxq won't be NULL even if trans_pcie->rxq is NULL. Modify checker to check for trans_pcie->rxq.
CVE-2023-53253 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: HID: nvidia-shield: Reference hid_device devm allocation of input_dev name Use hid_device for devm allocation of the input_dev name to avoid a use-after-free. input_unregister_device would trigger devres cleanup of all resources associated with the input_dev, free-ing the name. The name would subsequently be used in a uevent fired at the end of unregistering the input_dev.