| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
exfat: fix random stack corruption after get_block
When get_block is called with a buffer_head allocated on the stack, such
as do_mpage_readpage, stack corruption due to buffer_head UAF may occur in
the following race condition situation.
<CPU 0> <CPU 1>
mpage_read_folio
<<bh on stack>>
do_mpage_readpage
exfat_get_block
bh_read
__bh_read
get_bh(bh)
submit_bh
wait_on_buffer
...
end_buffer_read_sync
__end_buffer_read_notouch
unlock_buffer
<<keep going>>
...
...
...
...
<<bh is not valid out of mpage_read_folio>>
.
.
another_function
<<variable A on stack>>
put_bh(bh)
atomic_dec(bh->b_count)
* stack corruption here *
This patch returns -EAGAIN if a folio does not have buffers when bh_read
needs to be called. By doing this, the caller can fallback to functions
like block_read_full_folio(), create a buffer_head in the folio, and then
call get_block again.
Let's do not call bh_read() with on-stack buffer_head. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: release flow rule object from commit path
No need to postpone this to the commit release path, since no packets
are walking over this object, this is accessed from control plane only.
This helped uncovered UAF triggered by races with the netlink notifier. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: netlink notifier might race to release objects
commit release path is invoked via call_rcu and it runs lockless to
release the objects after rcu grace period. The netlink notifier handler
might win race to remove objects that the transaction context is still
referencing from the commit release path.
Call rcu_barrier() to ensure pending rcu callbacks run to completion
if the list of transactions to be destroyed is not empty. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Disable idle reallow as part of command/gpint execution
[Why]
Workaroud for a race condition where DMCUB is in the process of
committing to IPS1 during the handshake causing us to miss the
transition into IPS2 and touch the INBOX1 RPTR causing a HW hang.
[How]
Disable the reallow to ensure that we have enough of a gap between entry
and exit and we're not seeing back-to-back wake_and_executes. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Use del_timer_sync in fw reset flow of halting poll
Substitute del_timer() with del_timer_sync() in fw reset polling
deactivation flow, in order to prevent a race condition which occurs
when del_timer() is called and timer is deactivated while another
process is handling the timer interrupt. A situation that led to
the following call trace:
RIP: 0010:run_timer_softirq+0x137/0x420
<IRQ>
recalibrate_cpu_khz+0x10/0x10
ktime_get+0x3e/0xa0
? sched_clock_cpu+0xb/0xc0
__do_softirq+0xf5/0x2ea
irq_exit_rcu+0xc1/0xf0
sysvec_apic_timer_interrupt+0x9e/0xc0
asm_sysvec_apic_timer_interrupt+0x12/0x20
</IRQ> |
| In the Linux kernel, the following vulnerability has been resolved:
io-wq: check for wq exit after adding new worker task_work
We check IO_WQ_BIT_EXIT before attempting to create a new worker, and
wq exit cancels pending work if we have any. But it's possible to have
a race between the two, where creation checks exit finding it not set,
but we're in the process of exiting. The exit side will cancel pending
creation task_work, but there's a gap where we add task_work after we've
canceled existing creations at exit time.
Fix this by checking the EXIT bit post adding the creation task_work.
If it's set, run the same cancelation that exit does. |
| The Object Request Broker (ORB) in IBM SDK, Java Technology Edition 7.1.0.0 through 7.1.5.18 and 8.0.0.0 through 8.0.8.26 is vulnerable to remote denial of service, caused by a race condition in the management of ORB listener threads. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/smp: do not decrement idle task preempt count in CPU offline
With PREEMPT_COUNT=y, when a CPU is offlined and then onlined again, we
get:
BUG: scheduling while atomic: swapper/1/0/0x00000000
no locks held by swapper/1/0.
CPU: 1 PID: 0 Comm: swapper/1 Not tainted 5.15.0-rc2+ #100
Call Trace:
dump_stack_lvl+0xac/0x108
__schedule_bug+0xac/0xe0
__schedule+0xcf8/0x10d0
schedule_idle+0x3c/0x70
do_idle+0x2d8/0x4a0
cpu_startup_entry+0x38/0x40
start_secondary+0x2ec/0x3a0
start_secondary_prolog+0x10/0x14
This is because powerpc's arch_cpu_idle_dead() decrements the idle task's
preempt count, for reasons explained in commit a7c2bb8279d2 ("powerpc:
Re-enable preemption before cpu_die()"), specifically "start_secondary()
expects a preempt_count() of 0."
However, since commit 2c669ef6979c ("powerpc/preempt: Don't touch the idle
task's preempt_count during hotplug") and commit f1a0a376ca0c ("sched/core:
Initialize the idle task with preemption disabled"), that justification no
longer holds.
The idle task isn't supposed to re-enable preemption, so remove the
vestigial preempt_enable() from the CPU offline path.
Tested with pseries and powernv in qemu, and pseries on PowerVM. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: fix race in z_erofs_get_gbuf()
In z_erofs_get_gbuf(), the current task may be migrated to another
CPU between `z_erofs_gbuf_id()` and `spin_lock(&gbuf->lock)`.
Therefore, z_erofs_put_gbuf() will trigger the following issue
which was found by stress test:
<2>[772156.434168] kernel BUG at fs/erofs/zutil.c:58!
..
<4>[772156.435007]
<4>[772156.439237] CPU: 0 PID: 3078 Comm: stress Kdump: loaded Tainted: G E 6.10.0-rc7+ #2
<4>[772156.439239] Hardware name: Alibaba Cloud Alibaba Cloud ECS, BIOS 1.0.0 01/01/2017
<4>[772156.439241] pstate: 83400005 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--)
<4>[772156.439243] pc : z_erofs_put_gbuf+0x64/0x70 [erofs]
<4>[772156.439252] lr : z_erofs_lz4_decompress+0x600/0x6a0 [erofs]
..
<6>[772156.445958] stress (3127): drop_caches: 1
<4>[772156.446120] Call trace:
<4>[772156.446121] z_erofs_put_gbuf+0x64/0x70 [erofs]
<4>[772156.446761] z_erofs_lz4_decompress+0x600/0x6a0 [erofs]
<4>[772156.446897] z_erofs_decompress_queue+0x740/0xa10 [erofs]
<4>[772156.447036] z_erofs_runqueue+0x428/0x8c0 [erofs]
<4>[772156.447160] z_erofs_readahead+0x224/0x390 [erofs]
.. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/cpum_sf: Fix and protect memory allocation of SDBs with mutex
Reservation of the PMU hardware is done at first event creation
and is protected by a pair of mutex_lock() and mutex_unlock().
After reservation of the PMU hardware the memory
required for the PMUs the event is to be installed on is
allocated by allocate_buffers() and alloc_sampling_buffer().
This done outside of the mutex protection.
Without mutex protection two or more concurrent invocations of
perf_event_init() may run in parallel.
This can lead to allocation of Sample Data Blocks (SDBs)
multiple times for the same PMU.
Prevent this and protect memory allocation of SDBs by
mutex. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: bridge: confirm multicast packets before passing them up the stack
conntrack nf_confirm logic cannot handle cloned skbs referencing
the same nf_conn entry, which will happen for multicast (broadcast)
frames on bridges.
Example:
macvlan0
|
br0
/ \
ethX ethY
ethX (or Y) receives a L2 multicast or broadcast packet containing
an IP packet, flow is not yet in conntrack table.
1. skb passes through bridge and fake-ip (br_netfilter)Prerouting.
-> skb->_nfct now references a unconfirmed entry
2. skb is broad/mcast packet. bridge now passes clones out on each bridge
interface.
3. skb gets passed up the stack.
4. In macvlan case, macvlan driver retains clone(s) of the mcast skb
and schedules a work queue to send them out on the lower devices.
The clone skb->_nfct is not a copy, it is the same entry as the
original skb. The macvlan rx handler then returns RX_HANDLER_PASS.
5. Normal conntrack hooks (in NF_INET_LOCAL_IN) confirm the orig skb.
The Macvlan broadcast worker and normal confirm path will race.
This race will not happen if step 2 already confirmed a clone. In that
case later steps perform skb_clone() with skb->_nfct already confirmed (in
hash table). This works fine.
But such confirmation won't happen when eb/ip/nftables rules dropped the
packets before they reached the nf_confirm step in postrouting.
Pablo points out that nf_conntrack_bridge doesn't allow use of stateful
nat, so we can safely discard the nf_conn entry and let inet call
conntrack again.
This doesn't work for bridge netfilter: skb could have a nat
transformation. Also bridge nf prevents re-invocation of inet prerouting
via 'sabotage_in' hook.
Work around this problem by explicit confirmation of the entry at LOCAL_IN
time, before upper layer has a chance to clone the unconfirmed entry.
The downside is that this disables NAT and conntrack helpers.
Alternative fix would be to add locking to all code parts that deal with
unconfirmed packets, but even if that could be done in a sane way this
opens up other problems, for example:
-m physdev --physdev-out eth0 -j SNAT --snat-to 1.2.3.4
-m physdev --physdev-out eth1 -j SNAT --snat-to 1.2.3.5
For multicast case, only one of such conflicting mappings will be
created, conntrack only handles 1:1 NAT mappings.
Users should set create a setup that explicitly marks such traffic
NOTRACK (conntrack bypass) to avoid this, but we cannot auto-bypass
them, ruleset might have accept rules for untracked traffic already,
so user-visible behaviour would change. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Bluetooth Service allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Microsoft Graphics Component allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Win32K - GRFX allows an authorized attacker to execute code locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in SQL Server allows an authorized attacker to disclose information over a network. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Graphics Kernel allows an authorized attacker to execute code locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Graphics Kernel allows an authorized attacker to elevate privileges locally. |
| Concurrent execution using shared resource with improper synchronization ('race condition') in Windows Win32K - GRFX allows an authorized attacker to execute code locally. |
| In the Linux kernel, the following vulnerability has been resolved:
can: isotp: fix potential CAN frame reception race in isotp_rcv()
When receiving a CAN frame the current code logic does not consider
concurrently receiving processes which do not show up in real world
usage.
Ziyang Xuan writes:
The following syz problem is one of the scenarios. so->rx.len is
changed by isotp_rcv_ff() during isotp_rcv_cf(), so->rx.len equals
0 before alloc_skb() and equals 4096 after alloc_skb(). That will
trigger skb_over_panic() in skb_put().
=======================================================
CPU: 1 PID: 19 Comm: ksoftirqd/1 Not tainted 5.16.0-rc8-syzkaller #0
RIP: 0010:skb_panic+0x16c/0x16e net/core/skbuff.c:113
Call Trace:
<TASK>
skb_over_panic net/core/skbuff.c:118 [inline]
skb_put.cold+0x24/0x24 net/core/skbuff.c:1990
isotp_rcv_cf net/can/isotp.c:570 [inline]
isotp_rcv+0xa38/0x1e30 net/can/isotp.c:668
deliver net/can/af_can.c:574 [inline]
can_rcv_filter+0x445/0x8d0 net/can/af_can.c:635
can_receive+0x31d/0x580 net/can/af_can.c:665
can_rcv+0x120/0x1c0 net/can/af_can.c:696
__netif_receive_skb_one_core+0x114/0x180 net/core/dev.c:5465
__netif_receive_skb+0x24/0x1b0 net/core/dev.c:5579
Therefore we make sure the state changes and data structures stay
consistent at CAN frame reception time by adding a spin_lock in
isotp_rcv(). This fixes the issue reported by syzkaller but does not
affect real world operation. |
| A flaw was found in the Ansible aap-gateway. Concurrent requests handled by the gateway grpc service can result in concurrency issues due to race condition requests against the proxy. This issue potentially allows a less privileged user to obtain the JWT of a greater privileged user, enabling the server to be jeopardized. A user session or confidential data might be vulnerable. |