| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix deadlock between quota disable and qgroup rescan worker
Quota disable ioctl starts a transaction before waiting for the qgroup
rescan worker completes. However, this wait can be infinite and results
in deadlock because of circular dependency among the quota disable
ioctl, the qgroup rescan worker and the other task with transaction such
as block group relocation task.
The deadlock happens with the steps following:
1) Task A calls ioctl to disable quota. It starts a transaction and
waits for qgroup rescan worker completes.
2) Task B such as block group relocation task starts a transaction and
joins to the transaction that task A started. Then task B commits to
the transaction. In this commit, task B waits for a commit by task A.
3) Task C as the qgroup rescan worker starts its job and starts a
transaction. In this transaction start, task C waits for completion
of the transaction that task A started and task B committed.
This deadlock was found with fstests test case btrfs/115 and a zoned
null_blk device. The test case enables and disables quota, and the
block group reclaim was triggered during the quota disable by chance.
The deadlock was also observed by running quota enable and disable in
parallel with 'btrfs balance' command on regular null_blk devices.
An example report of the deadlock:
[372.469894] INFO: task kworker/u16:6:103 blocked for more than 122 seconds.
[372.479944] Not tainted 5.16.0-rc8 #7
[372.485067] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[372.493898] task:kworker/u16:6 state:D stack: 0 pid: 103 ppid: 2 flags:0x00004000
[372.503285] Workqueue: btrfs-qgroup-rescan btrfs_work_helper [btrfs]
[372.510782] Call Trace:
[372.514092] <TASK>
[372.521684] __schedule+0xb56/0x4850
[372.530104] ? io_schedule_timeout+0x190/0x190
[372.538842] ? lockdep_hardirqs_on+0x7e/0x100
[372.547092] ? _raw_spin_unlock_irqrestore+0x3e/0x60
[372.555591] schedule+0xe0/0x270
[372.561894] btrfs_commit_transaction+0x18bb/0x2610 [btrfs]
[372.570506] ? btrfs_apply_pending_changes+0x50/0x50 [btrfs]
[372.578875] ? free_unref_page+0x3f2/0x650
[372.585484] ? finish_wait+0x270/0x270
[372.591594] ? release_extent_buffer+0x224/0x420 [btrfs]
[372.599264] btrfs_qgroup_rescan_worker+0xc13/0x10c0 [btrfs]
[372.607157] ? lock_release+0x3a9/0x6d0
[372.613054] ? btrfs_qgroup_account_extent+0xda0/0xda0 [btrfs]
[372.620960] ? do_raw_spin_lock+0x11e/0x250
[372.627137] ? rwlock_bug.part.0+0x90/0x90
[372.633215] ? lock_is_held_type+0xe4/0x140
[372.639404] btrfs_work_helper+0x1ae/0xa90 [btrfs]
[372.646268] process_one_work+0x7e9/0x1320
[372.652321] ? lock_release+0x6d0/0x6d0
[372.658081] ? pwq_dec_nr_in_flight+0x230/0x230
[372.664513] ? rwlock_bug.part.0+0x90/0x90
[372.670529] worker_thread+0x59e/0xf90
[372.676172] ? process_one_work+0x1320/0x1320
[372.682440] kthread+0x3b9/0x490
[372.687550] ? _raw_spin_unlock_irq+0x24/0x50
[372.693811] ? set_kthread_struct+0x100/0x100
[372.700052] ret_from_fork+0x22/0x30
[372.705517] </TASK>
[372.709747] INFO: task btrfs-transacti:2347 blocked for more than 123 seconds.
[372.729827] Not tainted 5.16.0-rc8 #7
[372.745907] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[372.767106] task:btrfs-transacti state:D stack: 0 pid: 2347 ppid: 2 flags:0x00004000
[372.787776] Call Trace:
[372.801652] <TASK>
[372.812961] __schedule+0xb56/0x4850
[372.830011] ? io_schedule_timeout+0x190/0x190
[372.852547] ? lockdep_hardirqs_on+0x7e/0x100
[372.871761] ? _raw_spin_unlock_irqrestore+0x3e/0x60
[372.886792] schedule+0xe0/0x270
[372.901685] wait_current_trans+0x22c/0x310 [btrfs]
[372.919743] ? btrfs_put_transaction+0x3d0/0x3d0 [btrfs]
[372.938923] ? finish_wait+0x270/0x270
[372.959085] ? join_transaction+0xc7
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
mm/kmemleak: avoid scanning potential huge holes
When using devm_request_free_mem_region() and devm_memremap_pages() to
add ZONE_DEVICE memory, if requested free mem region's end pfn were
huge(e.g., 0x400000000), the node_end_pfn() will be also huge (see
move_pfn_range_to_zone()). Thus it creates a huge hole between
node_start_pfn() and node_end_pfn().
We found on some AMD APUs, amdkfd requested such a free mem region and
created a huge hole. In such a case, following code snippet was just
doing busy test_bit() looping on the huge hole.
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
struct page *page = pfn_to_online_page(pfn);
if (!page)
continue;
...
}
So we got a soft lockup:
watchdog: BUG: soft lockup - CPU#6 stuck for 26s! [bash:1221]
CPU: 6 PID: 1221 Comm: bash Not tainted 5.15.0-custom #1
RIP: 0010:pfn_to_online_page+0x5/0xd0
Call Trace:
? kmemleak_scan+0x16a/0x440
kmemleak_write+0x306/0x3a0
? common_file_perm+0x72/0x170
full_proxy_write+0x5c/0x90
vfs_write+0xb9/0x260
ksys_write+0x67/0xe0
__x64_sys_write+0x1a/0x20
do_syscall_64+0x3b/0xc0
entry_SYSCALL_64_after_hwframe+0x44/0xae
I did some tests with the patch.
(1) amdgpu module unloaded
before the patch:
real 0m0.976s
user 0m0.000s
sys 0m0.968s
after the patch:
real 0m0.981s
user 0m0.000s
sys 0m0.973s
(2) amdgpu module loaded
before the patch:
real 0m35.365s
user 0m0.000s
sys 0m35.354s
after the patch:
real 0m1.049s
user 0m0.000s
sys 0m1.042s |
| In the Linux kernel, the following vulnerability has been resolved:
net, neigh: Do not trigger immediate probes on NUD_FAILED from neigh_managed_work
syzkaller was able to trigger a deadlock for NTF_MANAGED entries [0]:
kworker/0:16/14617 is trying to acquire lock:
ffffffff8d4dd370 (&tbl->lock){++-.}-{2:2}, at: ___neigh_create+0x9e1/0x2990 net/core/neighbour.c:652
[...]
but task is already holding lock:
ffffffff8d4dd370 (&tbl->lock){++-.}-{2:2}, at: neigh_managed_work+0x35/0x250 net/core/neighbour.c:1572
The neighbor entry turned to NUD_FAILED state, where __neigh_event_send()
triggered an immediate probe as per commit cd28ca0a3dd1 ("neigh: reduce
arp latency") via neigh_probe() given table lock was held.
One option to fix this situation is to defer the neigh_probe() back to
the neigh_timer_handler() similarly as pre cd28ca0a3dd1. For the case
of NTF_MANAGED, this deferral is acceptable given this only happens on
actual failure state and regular / expected state is NUD_VALID with the
entry already present.
The fix adds a parameter to __neigh_event_send() in order to communicate
whether immediate probe is allowed or disallowed. Existing call-sites
of neigh_event_send() default as-is to immediate probe. However, the
neigh_managed_work() disables it via use of neigh_event_send_probe().
[0] <TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0xcd/0x134 lib/dump_stack.c:106
print_deadlock_bug kernel/locking/lockdep.c:2956 [inline]
check_deadlock kernel/locking/lockdep.c:2999 [inline]
validate_chain kernel/locking/lockdep.c:3788 [inline]
__lock_acquire.cold+0x149/0x3ab kernel/locking/lockdep.c:5027
lock_acquire kernel/locking/lockdep.c:5639 [inline]
lock_acquire+0x1ab/0x510 kernel/locking/lockdep.c:5604
__raw_write_lock_bh include/linux/rwlock_api_smp.h:202 [inline]
_raw_write_lock_bh+0x2f/0x40 kernel/locking/spinlock.c:334
___neigh_create+0x9e1/0x2990 net/core/neighbour.c:652
ip6_finish_output2+0x1070/0x14f0 net/ipv6/ip6_output.c:123
__ip6_finish_output net/ipv6/ip6_output.c:191 [inline]
__ip6_finish_output+0x61e/0xe90 net/ipv6/ip6_output.c:170
ip6_finish_output+0x32/0x200 net/ipv6/ip6_output.c:201
NF_HOOK_COND include/linux/netfilter.h:296 [inline]
ip6_output+0x1e4/0x530 net/ipv6/ip6_output.c:224
dst_output include/net/dst.h:451 [inline]
NF_HOOK include/linux/netfilter.h:307 [inline]
ndisc_send_skb+0xa99/0x17f0 net/ipv6/ndisc.c:508
ndisc_send_ns+0x3a9/0x840 net/ipv6/ndisc.c:650
ndisc_solicit+0x2cd/0x4f0 net/ipv6/ndisc.c:742
neigh_probe+0xc2/0x110 net/core/neighbour.c:1040
__neigh_event_send+0x37d/0x1570 net/core/neighbour.c:1201
neigh_event_send include/net/neighbour.h:470 [inline]
neigh_managed_work+0x162/0x250 net/core/neighbour.c:1574
process_one_work+0x9ac/0x1650 kernel/workqueue.c:2307
worker_thread+0x657/0x1110 kernel/workqueue.c:2454
kthread+0x2e9/0x3a0 kernel/kthread.c:377
ret_from_fork+0x1f/0x30 arch/x86/entry/entry_64.S:295
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
sysv: don't call sb_bread() with pointers_lock held
syzbot is reporting sleep in atomic context in SysV filesystem [1], for
sb_bread() is called with rw_spinlock held.
A "write_lock(&pointers_lock) => read_lock(&pointers_lock) deadlock" bug
and a "sb_bread() with write_lock(&pointers_lock)" bug were introduced by
"Replace BKL for chain locking with sysvfs-private rwlock" in Linux 2.5.12.
Then, "[PATCH] err1-40: sysvfs locking fix" in Linux 2.6.8 fixed the
former bug by moving pointers_lock lock to the callers, but instead
introduced a "sb_bread() with read_lock(&pointers_lock)" bug (which made
this problem easier to hit).
Al Viro suggested that why not to do like get_branch()/get_block()/
find_shared() in Minix filesystem does. And doing like that is almost a
revert of "[PATCH] err1-40: sysvfs locking fix" except that get_branch()
from with find_shared() is called without write_lock(&pointers_lock). |
| In the Linux kernel, the following vulnerability has been resolved:
can: j1939: prevent deadlock by changing j1939_socks_lock to rwlock
The following 3 locks would race against each other, causing the
deadlock situation in the Syzbot bug report:
- j1939_socks_lock
- active_session_list_lock
- sk_session_queue_lock
A reasonable fix is to change j1939_socks_lock to an rwlock, since in
the rare situations where a write lock is required for the linked list
that j1939_socks_lock is protecting, the code does not attempt to
acquire any more locks. This would break the circular lock dependency,
where, for example, the current thread already locks j1939_socks_lock
and attempts to acquire sk_session_queue_lock, and at the same time,
another thread attempts to acquire j1939_socks_lock while holding
sk_session_queue_lock.
NOTE: This patch along does not fix the unregister_netdevice bug
reported by Syzbot; instead, it solves a deadlock situation to prepare
for one or more further patches to actually fix the Syzbot bug, which
appears to be a reference counting problem within the j1939 codebase.
[mkl: remove unrelated newline change] |
| In the Linux kernel, the following vulnerability has been resolved:
PM / devfreq: Synchronize devfreq_monitor_[start/stop]
There is a chance if a frequent switch of the governor
done in a loop result in timer list corruption where
timer cancel being done from two place one from
cancel_delayed_work_sync() and followed by expire_timers()
can be seen from the traces[1].
while true
do
echo "simple_ondemand" > /sys/class/devfreq/1d84000.ufshc/governor
echo "performance" > /sys/class/devfreq/1d84000.ufshc/governor
done
It looks to be issue with devfreq driver where
device_monitor_[start/stop] need to synchronized so that
delayed work should get corrupted while it is either
being queued or running or being cancelled.
Let's use polling flag and devfreq lock to synchronize the
queueing the timer instance twice and work data being
corrupted.
[1]
...
..
<idle>-0 [003] 9436.209662: timer_cancel timer=0xffffff80444f0428
<idle>-0 [003] 9436.209664: timer_expire_entry timer=0xffffff80444f0428 now=0x10022da1c function=__typeid__ZTSFvP10timer_listE_global_addr baseclk=0x10022da1c
<idle>-0 [003] 9436.209718: timer_expire_exit timer=0xffffff80444f0428
kworker/u16:6-14217 [003] 9436.209863: timer_start timer=0xffffff80444f0428 function=__typeid__ZTSFvP10timer_listE_global_addr expires=0x10022da2b now=0x10022da1c flags=182452227
vendor.xxxyyy.ha-1593 [004] 9436.209888: timer_cancel timer=0xffffff80444f0428
vendor.xxxyyy.ha-1593 [004] 9436.216390: timer_init timer=0xffffff80444f0428
vendor.xxxyyy.ha-1593 [004] 9436.216392: timer_start timer=0xffffff80444f0428 function=__typeid__ZTSFvP10timer_listE_global_addr expires=0x10022da2c now=0x10022da1d flags=186646532
vendor.xxxyyy.ha-1593 [005] 9436.220992: timer_cancel timer=0xffffff80444f0428
xxxyyyTraceManag-7795 [004] 9436.261641: timer_cancel timer=0xffffff80444f0428
[2]
9436.261653][ C4] Unable to handle kernel paging request at virtual address dead00000000012a
[ 9436.261664][ C4] Mem abort info:
[ 9436.261666][ C4] ESR = 0x96000044
[ 9436.261669][ C4] EC = 0x25: DABT (current EL), IL = 32 bits
[ 9436.261671][ C4] SET = 0, FnV = 0
[ 9436.261673][ C4] EA = 0, S1PTW = 0
[ 9436.261675][ C4] Data abort info:
[ 9436.261677][ C4] ISV = 0, ISS = 0x00000044
[ 9436.261680][ C4] CM = 0, WnR = 1
[ 9436.261682][ C4] [dead00000000012a] address between user and kernel address ranges
[ 9436.261685][ C4] Internal error: Oops: 96000044 [#1] PREEMPT SMP
[ 9436.261701][ C4] Skip md ftrace buffer dump for: 0x3a982d0
...
[ 9436.262138][ C4] CPU: 4 PID: 7795 Comm: TraceManag Tainted: G S W O 5.10.149-android12-9-o-g17f915d29d0c #1
[ 9436.262141][ C4] Hardware name: Qualcomm Technologies, Inc. (DT)
[ 9436.262144][ C4] pstate: 22400085 (nzCv daIf +PAN -UAO +TCO BTYPE=--)
[ 9436.262161][ C4] pc : expire_timers+0x9c/0x438
[ 9436.262164][ C4] lr : expire_timers+0x2a4/0x438
[ 9436.262168][ C4] sp : ffffffc010023dd0
[ 9436.262171][ C4] x29: ffffffc010023df0 x28: ffffffd0636fdc18
[ 9436.262178][ C4] x27: ffffffd063569dd0 x26: ffffffd063536008
[ 9436.262182][ C4] x25: 0000000000000001 x24: ffffff88f7c69280
[ 9436.262185][ C4] x23: 00000000000000e0 x22: dead000000000122
[ 9436.262188][ C4] x21: 000000010022da29 x20: ffffff8af72b4e80
[ 9436.262191][ C4] x19: ffffffc010023e50 x18: ffffffc010025038
[ 9436.262195][ C4] x17: 0000000000000240 x16: 0000000000000201
[ 9436.262199][ C4] x15: ffffffffffffffff x14: ffffff889f3c3100
[ 9436.262203][ C4] x13: ffffff889f3c3100 x12: 00000000049f56b8
[ 9436.262207][ C4] x11: 00000000049f56b8 x10: 00000000ffffffff
[ 9436.262212][ C4] x9 : ffffffc010023e50 x8 : dead000000000122
[ 9436.262216][ C4] x7 : ffffffffffffffff x6 : ffffffc0100239d8
[ 9436.262220][ C4] x5 : 0000000000000000 x4 : 0000000000000101
[ 9436.262223][ C4] x3 : 0000000000000080 x2 : ffffff8
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: fix deadlock or deadcode of misusing dget()
The lock order is incorrect between denty and its parent, we should
always make sure that the parent get the lock first.
But since this deadcode is never used and the parent dir will always
be set from the callers, let's just remove it. |
| In the Linux kernel, the following vulnerability has been resolved:
PM: sleep: Fix possible deadlocks in core system-wide PM code
It is reported that in low-memory situations the system-wide resume core
code deadlocks, because async_schedule_dev() executes its argument
function synchronously if it cannot allocate memory (and not only in
that case) and that function attempts to acquire a mutex that is already
held. Executing the argument function synchronously from within
dpm_async_fn() may also be problematic for ordering reasons (it may
cause a consumer device's resume callback to be invoked before a
requisite supplier device's one, for example).
Address this by changing the code in question to use
async_schedule_dev_nocall() for scheduling the asynchronous
execution of device suspend and resume functions and to directly
run them synchronously if async_schedule_dev_nocall() returns false. |
| In the Linux kernel, the following vulnerability has been resolved:
drm: Don't unref the same fb many times by mistake due to deadlock handling
If we get a deadlock after the fb lookup in drm_mode_page_flip_ioctl()
we proceed to unref the fb and then retry the whole thing from the top.
But we forget to reset the fb pointer back to NULL, and so if we then
get another error during the retry, before the fb lookup, we proceed
the unref the same fb again without having gotten another reference.
The end result is that the fb will (eventually) end up being freed
while it's still in use.
Reset fb to NULL once we've unreffed it to avoid doing it again
until we've done another fb lookup.
This turned out to be pretty easy to hit on a DG2 when doing async
flips (and CONFIG_DEBUG_WW_MUTEX_SLOWPATH=y). The first symptom I
saw that drm_closefb() simply got stuck in a busy loop while walking
the framebuffer list. Fortunately I was able to convince it to oops
instead, and from there it was easier to track down the culprit. |
| In the Linux kernel, the following vulnerability has been resolved:
serial: imx: fix tx statemachine deadlock
When using the serial port as RS485 port, the tx statemachine is used to
control the RTS pin to drive the RS485 transceiver TX_EN pin. When the
TTY port is closed in the middle of a transmission (for instance during
userland application crash), imx_uart_shutdown disables the interface
and disables the Transmission Complete interrupt. afer that,
imx_uart_stop_tx bails on an incomplete transmission, to be retriggered
by the TC interrupt. This interrupt is disabled and therefore the tx
statemachine never transitions out of SEND. The statemachine is in
deadlock now, and the TX_EN remains low, making the interface useless.
imx_uart_stop_tx now checks for incomplete transmission AND whether TC
interrupts are enabled before bailing to be retriggered. This makes sure
the state machine handling is reached, and is properly set to
WAIT_AFTER_SEND. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: Fix a deadlock in the error handler
The following deadlock has been observed on a test setup:
- All tags allocated
- The SCSI error handler calls ufshcd_eh_host_reset_handler()
- ufshcd_eh_host_reset_handler() queues work that calls
ufshcd_err_handler()
- ufshcd_err_handler() locks up as follows:
Workqueue: ufs_eh_wq_0 ufshcd_err_handler.cfi_jt
Call trace:
__switch_to+0x298/0x5d8
__schedule+0x6cc/0xa94
schedule+0x12c/0x298
blk_mq_get_tag+0x210/0x480
__blk_mq_alloc_request+0x1c8/0x284
blk_get_request+0x74/0x134
ufshcd_exec_dev_cmd+0x68/0x640
ufshcd_verify_dev_init+0x68/0x35c
ufshcd_probe_hba+0x12c/0x1cb8
ufshcd_host_reset_and_restore+0x88/0x254
ufshcd_reset_and_restore+0xd0/0x354
ufshcd_err_handler+0x408/0xc58
process_one_work+0x24c/0x66c
worker_thread+0x3e8/0xa4c
kthread+0x150/0x1b4
ret_from_fork+0x10/0x30
Fix this lockup by making ufshcd_exec_dev_cmd() allocate a reserved
request. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: pciehp: Fix infinite loop in IRQ handler upon power fault
The Power Fault Detected bit in the Slot Status register differs from
all other hotplug events in that it is sticky: It can only be cleared
after turning off slot power. Per PCIe r5.0, sec. 6.7.1.8:
If a power controller detects a main power fault on the hot-plug slot,
it must automatically set its internal main power fault latch [...].
The main power fault latch is cleared when software turns off power to
the hot-plug slot.
The stickiness used to cause interrupt storms and infinite loops which
were fixed in 2009 by commits 5651c48cfafe ("PCI pciehp: fix power fault
interrupt storm problem") and 99f0169c17f3 ("PCI: pciehp: enable
software notification on empty slots").
Unfortunately in 2020 the infinite loop issue was inadvertently
reintroduced by commit 8edf5332c393 ("PCI: pciehp: Fix MSI interrupt
race"): The hardirq handler pciehp_isr() clears the PFD bit until
pciehp's power_fault_detected flag is set. That happens in the IRQ
thread pciehp_ist(), which never learns of the event because the hardirq
handler is stuck in an infinite loop. Fix by setting the
power_fault_detected flag already in the hardirq handler. |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: fix deadlock in __mptcp_push_pending()
__mptcp_push_pending() may call mptcp_flush_join_list() with subflow
socket lock held. If such call hits mptcp_sockopt_sync_all() then
subsequently __mptcp_sockopt_sync() could try to lock the subflow
socket for itself, causing a deadlock.
sysrq: Show Blocked State
task:ss-server state:D stack: 0 pid: 938 ppid: 1 flags:0x00000000
Call Trace:
<TASK>
__schedule+0x2d6/0x10c0
? __mod_memcg_state+0x4d/0x70
? csum_partial+0xd/0x20
? _raw_spin_lock_irqsave+0x26/0x50
schedule+0x4e/0xc0
__lock_sock+0x69/0x90
? do_wait_intr_irq+0xa0/0xa0
__lock_sock_fast+0x35/0x50
mptcp_sockopt_sync_all+0x38/0xc0
__mptcp_push_pending+0x105/0x200
mptcp_sendmsg+0x466/0x490
sock_sendmsg+0x57/0x60
__sys_sendto+0xf0/0x160
? do_wait_intr_irq+0xa0/0xa0
? fpregs_restore_userregs+0x12/0xd0
__x64_sys_sendto+0x20/0x30
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RIP: 0033:0x7f9ba546c2d0
RSP: 002b:00007ffdc3b762d8 EFLAGS: 00000246 ORIG_RAX: 000000000000002c
RAX: ffffffffffffffda RBX: 00007f9ba56c8060 RCX: 00007f9ba546c2d0
RDX: 000000000000077a RSI: 0000000000e5e180 RDI: 0000000000000234
RBP: 0000000000cc57f0 R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 00007f9ba56c8060
R13: 0000000000b6ba60 R14: 0000000000cc7840 R15: 41d8685b1d7901b8
</TASK>
Fix the issue by using __mptcp_flush_join_list() instead of plain
mptcp_flush_join_list() inside __mptcp_push_pending(), as suggested by
Florian. The sockopt sync will be deferred to the workqueue. |
| In the Linux kernel, the following vulnerability has been resolved:
net/mlx5e: Fix memory leak in mlx5_core_destroy_cq() error path
Prior to this patch in case mlx5_core_destroy_cq() failed it returns
without completing all destroy operations and that leads to memory leak.
Instead, complete the destroy flow before return error.
Also move mlx5_debug_cq_remove() to the beginning of mlx5_core_destroy_cq()
to be symmetrical with mlx5_core_create_cq().
kmemleak complains on:
unreferenced object 0xc000000038625100 (size 64):
comm "ethtool", pid 28301, jiffies 4298062946 (age 785.380s)
hex dump (first 32 bytes):
60 01 48 94 00 00 00 c0 b8 05 34 c3 00 00 00 c0 `.H.......4.....
02 00 00 00 00 00 00 00 00 db 7d c1 00 00 00 c0 ..........}.....
backtrace:
[<000000009e8643cb>] add_res_tree+0xd0/0x270 [mlx5_core]
[<00000000e7cb8e6c>] mlx5_debug_cq_add+0x5c/0xc0 [mlx5_core]
[<000000002a12918f>] mlx5_core_create_cq+0x1d0/0x2d0 [mlx5_core]
[<00000000cef0a696>] mlx5e_create_cq+0x210/0x3f0 [mlx5_core]
[<000000009c642c26>] mlx5e_open_cq+0xb4/0x130 [mlx5_core]
[<0000000058dfa578>] mlx5e_ptp_open+0x7f4/0xe10 [mlx5_core]
[<0000000081839561>] mlx5e_open_channels+0x9cc/0x13e0 [mlx5_core]
[<0000000009cf05d4>] mlx5e_switch_priv_channels+0xa4/0x230
[mlx5_core]
[<0000000042bbedd8>] mlx5e_safe_switch_params+0x14c/0x300
[mlx5_core]
[<0000000004bc9db8>] set_pflag_tx_port_ts+0x9c/0x160 [mlx5_core]
[<00000000a0553443>] mlx5e_set_priv_flags+0xd0/0x1b0 [mlx5_core]
[<00000000a8f3d84b>] ethnl_set_privflags+0x234/0x2d0
[<00000000fd27f27c>] genl_family_rcv_msg_doit+0x108/0x1d0
[<00000000f495e2bb>] genl_family_rcv_msg+0xe4/0x1f0
[<00000000646c5c2c>] genl_rcv_msg+0x78/0x120
[<00000000d53e384e>] netlink_rcv_skb+0x74/0x1a0 |
| In the Linux kernel, the following vulnerability has been resolved:
iio: adis16475: fix deadlock on frequency set
With commit 39c024b51b560
("iio: adis16475: improve sync scale mode handling"), two deadlocks were
introduced:
1) The call to 'adis_write_reg_16()' was not changed to it's unlocked
version.
2) The lock was not being released on the success path of the function.
This change fixes both these issues. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: add error checking to ext4_ext_replay_set_iblocks()
If the call to ext4_map_blocks() fails due to an corrupted file
system, ext4_ext_replay_set_iblocks() can get stuck in an infinite
loop. This could be reproduced by running generic/526 with a file
system that has inline_data and fast_commit enabled. The system will
repeatedly log to the console:
EXT4-fs warning (device dm-3): ext4_block_to_path:105: block 1074800922 > max in inode 131076
and the stack that it gets stuck in is:
ext4_block_to_path+0xe3/0x130
ext4_ind_map_blocks+0x93/0x690
ext4_map_blocks+0x100/0x660
skip_hole+0x47/0x70
ext4_ext_replay_set_iblocks+0x223/0x440
ext4_fc_replay_inode+0x29e/0x3b0
ext4_fc_replay+0x278/0x550
do_one_pass+0x646/0xc10
jbd2_journal_recover+0x14a/0x270
jbd2_journal_load+0xc4/0x150
ext4_load_journal+0x1f3/0x490
ext4_fill_super+0x22d4/0x2c00
With this patch, generic/526 still fails, but system is no longer
locking up in a tight loop. It's likely the root casue is that
fast_commit replay is corrupting file systems with inline_data, and we
probably need to add better error handling in the fast commit replay
code path beyond what is done here, which essentially just breaks the
infinite loop without reporting the to the higher levels of the code. |
| In the Linux kernel, the following vulnerability has been resolved:
mwifiex: bring down link before deleting interface
We can deadlock when rmmod'ing the driver or going through firmware
reset, because the cfg80211_unregister_wdev() has to bring down the link
for us, ... which then grab the same wiphy lock.
nl80211_del_interface() already handles a very similar case, with a nice
description:
/*
* We hold RTNL, so this is safe, without RTNL opencount cannot
* reach 0, and thus the rdev cannot be deleted.
*
* We need to do it for the dev_close(), since that will call
* the netdev notifiers, and we need to acquire the mutex there
* but don't know if we get there from here or from some other
* place (e.g. "ip link set ... down").
*/
mutex_unlock(&rdev->wiphy.mtx);
...
Do similarly for mwifiex teardown, by ensuring we bring the link down
first.
Sample deadlock trace:
[ 247.103516] INFO: task rmmod:2119 blocked for more than 123 seconds.
[ 247.110630] Not tainted 5.12.4 #5
[ 247.115796] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 247.124557] task:rmmod state:D stack: 0 pid: 2119 ppid: 2114 flags:0x00400208
[ 247.133905] Call trace:
[ 247.136644] __switch_to+0x130/0x170
[ 247.140643] __schedule+0x714/0xa0c
[ 247.144548] schedule_preempt_disabled+0x88/0xf4
[ 247.149714] __mutex_lock_common+0x43c/0x750
[ 247.154496] mutex_lock_nested+0x5c/0x68
[ 247.158884] cfg80211_netdev_notifier_call+0x280/0x4e0 [cfg80211]
[ 247.165769] raw_notifier_call_chain+0x4c/0x78
[ 247.170742] call_netdevice_notifiers_info+0x68/0xa4
[ 247.176305] __dev_close_many+0x7c/0x138
[ 247.180693] dev_close_many+0x7c/0x10c
[ 247.184893] unregister_netdevice_many+0xfc/0x654
[ 247.190158] unregister_netdevice_queue+0xb4/0xe0
[ 247.195424] _cfg80211_unregister_wdev+0xa4/0x204 [cfg80211]
[ 247.201816] cfg80211_unregister_wdev+0x20/0x2c [cfg80211]
[ 247.208016] mwifiex_del_virtual_intf+0xc8/0x188 [mwifiex]
[ 247.214174] mwifiex_uninit_sw+0x158/0x1b0 [mwifiex]
[ 247.219747] mwifiex_remove_card+0x38/0xa0 [mwifiex]
[ 247.225316] mwifiex_pcie_remove+0xd0/0xe0 [mwifiex_pcie]
[ 247.231451] pci_device_remove+0x50/0xe0
[ 247.235849] device_release_driver_internal+0x110/0x1b0
[ 247.241701] driver_detach+0x5c/0x9c
[ 247.245704] bus_remove_driver+0x84/0xb8
[ 247.250095] driver_unregister+0x3c/0x60
[ 247.254486] pci_unregister_driver+0x2c/0x90
[ 247.259267] cleanup_module+0x18/0xcdc [mwifiex_pcie] |
| In the Linux kernel, the following vulnerability has been resolved:
usb: cdnsp: Fix deadlock issue in cdnsp_thread_irq_handler
Patch fixes the following critical issue caused by deadlock which has been
detected during testing NCM class:
smp: csd: Detected non-responsive CSD lock (#1) on CPU#0
smp: csd: CSD lock (#1) unresponsive.
....
RIP: 0010:native_queued_spin_lock_slowpath+0x61/0x1d0
RSP: 0018:ffffbc494011cde0 EFLAGS: 00000002
RAX: 0000000000000101 RBX: ffff9ee8116b4a68 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff9ee8116b4658
RBP: ffffbc494011cde0 R08: 0000000000000001 R09: 0000000000000000
R10: ffff9ee8116b4670 R11: 0000000000000000 R12: ffff9ee8116b4658
R13: ffff9ee8116b4670 R14: 0000000000000246 R15: ffff9ee8116b4658
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f7bcc41a830 CR3: 000000007a612003 CR4: 00000000001706e0
Call Trace:
<IRQ>
do_raw_spin_lock+0xc0/0xd0
_raw_spin_lock_irqsave+0x95/0xa0
cdnsp_gadget_ep_queue.cold+0x88/0x107 [cdnsp_udc_pci]
usb_ep_queue+0x35/0x110
eth_start_xmit+0x220/0x3d0 [u_ether]
ncm_tx_timeout+0x34/0x40 [usb_f_ncm]
? ncm_free_inst+0x50/0x50 [usb_f_ncm]
__hrtimer_run_queues+0xac/0x440
hrtimer_run_softirq+0x8c/0xb0
__do_softirq+0xcf/0x428
asm_call_irq_on_stack+0x12/0x20
</IRQ>
do_softirq_own_stack+0x61/0x70
irq_exit_rcu+0xc1/0xd0
sysvec_apic_timer_interrupt+0x52/0xb0
asm_sysvec_apic_timer_interrupt+0x12/0x20
RIP: 0010:do_raw_spin_trylock+0x18/0x40
RSP: 0018:ffffbc494138bda8 EFLAGS: 00000246
RAX: 0000000000000000 RBX: ffff9ee8116b4658 RCX: 0000000000000000
RDX: 0000000000000001 RSI: 0000000000000000 RDI: ffff9ee8116b4658
RBP: ffffbc494138bda8 R08: 0000000000000001 R09: 0000000000000000
R10: ffff9ee8116b4670 R11: 0000000000000000 R12: ffff9ee8116b4658
R13: ffff9ee8116b4670 R14: ffff9ee7b5c73d80 R15: ffff9ee8116b4000
_raw_spin_lock+0x3d/0x70
? cdnsp_thread_irq_handler.cold+0x32/0x112c [cdnsp_udc_pci]
cdnsp_thread_irq_handler.cold+0x32/0x112c [cdnsp_udc_pci]
? cdnsp_remove_request+0x1f0/0x1f0 [cdnsp_udc_pci]
? cdnsp_thread_irq_handler+0x5/0xa0 [cdnsp_udc_pci]
? irq_thread+0xa0/0x1c0
irq_thread_fn+0x28/0x60
irq_thread+0x105/0x1c0
? __kthread_parkme+0x42/0x90
? irq_forced_thread_fn+0x90/0x90
? wake_threads_waitq+0x30/0x30
? irq_thread_check_affinity+0xe0/0xe0
kthread+0x12a/0x160
? kthread_park+0x90/0x90
ret_from_fork+0x22/0x30
The root cause of issue is spin_lock/spin_unlock instruction instead
spin_lock_irqsave/spin_lock_irqrestore in cdnsp_thread_irq_handler
function. |
| In the Linux kernel, the following vulnerability has been resolved:
mac80211: fix deadlock in AP/VLAN handling
Syzbot reports that when you have AP_VLAN interfaces that are up
and close the AP interface they belong to, we get a deadlock. No
surprise - since we dev_close() them with the wiphy mutex held,
which goes back into the netdev notifier in cfg80211 and tries to
acquire the wiphy mutex there.
To fix this, we need to do two things:
1) prevent changing iftype while AP_VLANs are up, we can't
easily fix this case since cfg80211 already calls us with
the wiphy mutex held, but change_interface() is relatively
rare in drivers anyway, so changing iftype isn't used much
(and userspace has to fall back to down/change/up anyway)
2) pull the dev_close() loop over VLANs out of the wiphy mutex
section in the normal stop case |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: fix a crash if ->get_sset_count() fails
If ds->ops->get_sset_count() fails then it "count" is a negative error
code such as -EOPNOTSUPP. Because "i" is an unsigned int, the negative
error code is type promoted to a very high value and the loop will
corrupt memory until the system crashes.
Fix this by checking for error codes and changing the type of "i" to
just int. |