CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
fs: dlm: fix use after free in midcomms commit
While working on processing dlm message in softirq context I experienced
the following KASAN use-after-free warning:
[ 151.760477] ==================================================================
[ 151.761803] BUG: KASAN: use-after-free in dlm_midcomms_commit_mhandle+0x19d/0x4b0
[ 151.763414] Read of size 4 at addr ffff88811a980c60 by task lock_torture/1347
[ 151.765284] CPU: 7 PID: 1347 Comm: lock_torture Not tainted 6.1.0-rc4+ #2828
[ 151.766778] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-3.module+el8.7.0+16134+e5908aa2 04/01/2014
[ 151.768726] Call Trace:
[ 151.769277] <TASK>
[ 151.769748] dump_stack_lvl+0x5b/0x86
[ 151.770556] print_report+0x180/0x4c8
[ 151.771378] ? kasan_complete_mode_report_info+0x7c/0x1e0
[ 151.772241] ? dlm_midcomms_commit_mhandle+0x19d/0x4b0
[ 151.773069] kasan_report+0x93/0x1a0
[ 151.773668] ? dlm_midcomms_commit_mhandle+0x19d/0x4b0
[ 151.774514] __asan_load4+0x7e/0xa0
[ 151.775089] dlm_midcomms_commit_mhandle+0x19d/0x4b0
[ 151.775890] ? create_message.isra.29.constprop.64+0x57/0xc0
[ 151.776770] send_common+0x19f/0x1b0
[ 151.777342] ? remove_from_waiters+0x60/0x60
[ 151.778017] ? lock_downgrade+0x410/0x410
[ 151.778648] ? __this_cpu_preempt_check+0x13/0x20
[ 151.779421] ? rcu_lockdep_current_cpu_online+0x88/0xc0
[ 151.780292] _convert_lock+0x46/0x150
[ 151.780893] convert_lock+0x7b/0xc0
[ 151.781459] dlm_lock+0x3ac/0x580
[ 151.781993] ? 0xffffffffc0540000
[ 151.782522] ? torture_stop+0x120/0x120 [dlm_locktorture]
[ 151.783379] ? dlm_scan_rsbs+0xa70/0xa70
[ 151.784003] ? preempt_count_sub+0xd6/0x130
[ 151.784661] ? is_module_address+0x47/0x70
[ 151.785309] ? torture_stop+0x120/0x120 [dlm_locktorture]
[ 151.786166] ? 0xffffffffc0540000
[ 151.786693] ? lockdep_init_map_type+0xc3/0x360
[ 151.787414] ? 0xffffffffc0540000
[ 151.787947] torture_dlm_lock_sync.isra.3+0xe9/0x150 [dlm_locktorture]
[ 151.789004] ? torture_stop+0x120/0x120 [dlm_locktorture]
[ 151.789858] ? 0xffffffffc0540000
[ 151.790392] ? lock_torture_cleanup+0x20/0x20 [dlm_locktorture]
[ 151.791347] ? delay_tsc+0x94/0xc0
[ 151.791898] torture_ex_iter+0xc3/0xea [dlm_locktorture]
[ 151.792735] ? torture_start+0x30/0x30 [dlm_locktorture]
[ 151.793606] lock_torture+0x177/0x270 [dlm_locktorture]
[ 151.794448] ? torture_dlm_lock_sync.isra.3+0x150/0x150 [dlm_locktorture]
[ 151.795539] ? lock_torture_stats+0x80/0x80 [dlm_locktorture]
[ 151.796476] ? do_raw_spin_lock+0x11e/0x1e0
[ 151.797152] ? mark_held_locks+0x34/0xb0
[ 151.797784] ? _raw_spin_unlock_irqrestore+0x30/0x70
[ 151.798581] ? __kthread_parkme+0x79/0x110
[ 151.799246] ? trace_preempt_on+0x2a/0xf0
[ 151.799902] ? __kthread_parkme+0x79/0x110
[ 151.800579] ? preempt_count_sub+0xd6/0x130
[ 151.801271] ? __kasan_check_read+0x11/0x20
[ 151.801963] ? __kthread_parkme+0xec/0x110
[ 151.802630] ? lock_torture_stats+0x80/0x80 [dlm_locktorture]
[ 151.803569] kthread+0x192/0x1d0
[ 151.804104] ? kthread_complete_and_exit+0x30/0x30
[ 151.804881] ret_from_fork+0x1f/0x30
[ 151.805480] </TASK>
[ 151.806111] Allocated by task 1347:
[ 151.806681] kasan_save_stack+0x26/0x50
[ 151.807308] kasan_set_track+0x25/0x30
[ 151.807920] kasan_save_alloc_info+0x1e/0x30
[ 151.808609] __kasan_slab_alloc+0x63/0x80
[ 151.809263] kmem_cache_alloc+0x1ad/0x830
[ 151.809916] dlm_allocate_mhandle+0x17/0x20
[ 151.810590] dlm_midcomms_get_mhandle+0x96/0x260
[ 151.811344] _create_message+0x95/0x180
[ 151.811994] create_message.isra.29.constprop.64+0x57/0xc0
[ 151.812880] send_common+0x129/0x1b0
[ 151.813467] _convert_lock+0x46/0x150
[ 151.814074] convert_lock+0x7b/0xc0
[ 151.814648] dlm_lock+0x3ac/0x580
[ 151.815199] torture_dlm_lock_sync.isra.3+0xe9/0x150 [dlm_locktorture]
[ 151.816258] torture_ex_iter+0xc3/0xea [dlm_locktorture]
[ 151.817129] lock_t
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
octeon_ep: cancel queued works in probe error path
If it fails to get the devices's MAC address, octep_probe exits while
leaving the delayed work intr_poll_task queued. When the work later
runs, it's a use after free.
Move the cancelation of intr_poll_task from octep_remove into
octep_device_cleanup. This does not change anything in the octep_remove
flow, but octep_device_cleanup is called also in the octep_probe error
path, where the cancelation is needed.
Note that the cancelation of ctrl_mbox_task has to follow
intr_poll_task's, because the ctrl_mbox_task may be queued by
intr_poll_task. |
Insufficiently Protected Credentials in the Crowdstrike connector can lead to Crowdstrike credentials being leaked. A malicious user can access cached credentials from a Crowdstrike connector in another space by creating and running a Crowdstrike connector in a space to which they have access. |
CubeAPM nightly-2025-08-01-1 allow unauthenticated attackers to inject arbitrary log entries into production systems via the /api/logs/insert/elasticsearch/_bulk endpoint. This endpoint accepts bulk log data without requiring authentication or input validation, allowing remote attackers to perform unauthorized log injection. Exploitation may lead to false log entries, log poisoning, alert obfuscation, and potential performance degradation of the observability pipeline. The issue is present in the core CubeAPM platform and is not limited to specific deployment configurations. |
A weakness has been identified in code-projects Online Hotel Reservation System 1.0. The impacted element is an unknown function of the file /admin/editpicexec.php. This manipulation of the argument image causes unrestricted upload. Remote exploitation of the attack is possible. The exploit has been made available to the public and could be exploited. |
Versions of the package pdfmake before 0.3.0-beta.17 are vulnerable to Allocation of Resources Without Limits or Throttling via repeatedly redirect URL in file embedding. An attacker can cause the application to crash or become unresponsive by providing crafted input that triggers this condition. |
The Profile widget in Liferay Portal 7.4.0 through 7.4.3.111, and older unsupported versions, and Liferay DXP 2023.Q4.0 through 2023.Q4.5, 2023.Q3.1 through 2023.Q3.8, 7.4 GA through update 92, and older unsupported versions uses a user’s name in the “Content-Disposition” header, which allows remote authenticated users to change the file extension when a vCard file is downloaded. |
In the Linux kernel, the following vulnerability has been resolved:
perf/smmuv3: Fix hotplug callback leak in arm_smmu_pmu_init()
arm_smmu_pmu_init() won't remove the callback added by
cpuhp_setup_state_multi() when platform_driver_register() failed. Remove
the callback by cpuhp_remove_multi_state() in fail path.
Similar to the handling of arm_ccn_init() in commit 26242b330093 ("bus:
arm-ccn: Prevent hotplug callback leak") |
In the Linux kernel, the following vulnerability has been resolved:
platform/x86: mxm-wmi: fix memleak in mxm_wmi_call_mx[ds|mx]()
The ACPI buffer memory (out.pointer) returned by wmi_evaluate_method()
is not freed after the call, so it leads to memory leak.
The method results in ACPI buffer is not used, so just pass NULL to
wmi_evaluate_method() which fixes the memory leak. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix potential null-deref in dm_resume
[Why]
Fixing smatch error:
dm_resume() error: we previously assumed 'aconnector->dc_link' could be null
[How]
Check if dc_link null at the beginning of the loop,
so further checks can be dropped. |
In the Linux kernel, the following vulnerability has been resolved:
iommufd: Fix unpinning of pages when an access is present
syzkaller found that the calculation of batch_last_index should use
'start_index' since at input to this function the batch is either empty or
it has already been adjusted to cross any accesses so it will start at the
point we are unmapping from.
Getting this wrong causes the unmap to run over the end of the pages
which corrupts pages that were never mapped. In most cases this triggers
the num pinned debugging:
WARNING: CPU: 0 PID: 557 at drivers/iommu/iommufd/pages.c:294 __iopt_area_unfill_domain+0x152/0x560
Modules linked in:
CPU: 0 PID: 557 Comm: repro Not tainted 6.3.0-rc2-eeac8ede1755 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014
RIP: 0010:__iopt_area_unfill_domain+0x152/0x560
Code: d2 0f ff 44 8b 64 24 54 48 8b 44 24 48 31 ff 44 89 e6 48 89 44 24 38 e8 fc d3 0f ff 45 85 e4 0f 85 eb 01 00 00 e8 0e d2 0f ff <0f> 0b e8 07 d2 0f ff 48 8b 44 24 38 89 5c 24 58 89 18 8b 44 24 54
RSP: 0018:ffffc9000108baf0 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 00000000ffffffff RCX: ffffffff821e3f85
RDX: 0000000000000000 RSI: ffff88800faf0000 RDI: 0000000000000002
RBP: ffffc9000108bd18 R08: 000000000003ca25 R09: 0000000000000014
R10: 000000000003ca00 R11: 0000000000000024 R12: 0000000000000004
R13: 0000000000000801 R14: 00000000000007ff R15: 0000000000000800
FS: 00007f3499ce1740(0000) GS:ffff88807dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000020000243 CR3: 00000000179c2001 CR4: 0000000000770ef0
PKRU: 55555554
Call Trace:
<TASK>
iopt_area_unfill_domain+0x32/0x40
iopt_table_remove_domain+0x23f/0x4c0
iommufd_device_selftest_detach+0x3a/0x90
iommufd_selftest_destroy+0x55/0x70
iommufd_object_destroy_user+0xce/0x130
iommufd_destroy+0xa2/0xc0
iommufd_fops_ioctl+0x206/0x330
__x64_sys_ioctl+0x10e/0x160
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x72/0xdc
Also add some useful WARN_ON sanity checks. |
In the Linux kernel, the following vulnerability has been resolved:
accel/qaic: Fix a leak in map_user_pages()
If get_user_pages_fast() allocates some pages but not as many as we
wanted, then the current code leaks those pages. Call put_page() on
the pages before returning. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath6kl: reduce WARN to dev_dbg() in callback
The warn is triggered on a known race condition, documented in the code above
the test, that is correctly handled. Using WARN() hinders automated testing.
Reducing severity. |
Improper Neutralization of Input During Web Page Generation (XSS or 'Cross-site Scripting') vulnerability in ABB EIBPORT V3 KNX, ABB EIBPORT V3 KNX GSM.This issue affects EIBPORT V3 KNX: before 3.9.2; EIBPORT V3 KNX GSM: before 3.9.2. |
In the Linux kernel, the following vulnerability has been resolved:
media: coda: Add check for kmalloc
As the kmalloc may return NULL pointer,
it should be better to check the return value
in order to avoid NULL poineter dereference,
same as the others. |
In the Linux kernel, the following vulnerability has been resolved:
staging: rtl8723bs: fix a potential memory leak in rtw_init_cmd_priv()
In rtw_init_cmd_priv(), if `pcmdpriv->rsp_allocated_buf` is allocated
in failure, then `pcmdpriv->cmd_allocated_buf` will be not properly
released. Besides, considering there are only two error paths and the
first one can directly return, so we do not need implicitly jump to the
`exit` tag to execute the error handler.
So this patch added `kfree(pcmdpriv->cmd_allocated_buf);` on the error
path to release the resource and simplified the return logic of
rtw_init_cmd_priv(). As there is no proper device to test with, no runtime
testing was performed. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Fix memory leak in hpd_rx_irq_create_workqueue()
If construction of the array of work queues to handle hpd_rx_irq offload
work fails, we need to unwind. Destroy all the created workqueues and
the allocated memory for the hpd_rx_irq_offload_work_queue struct array. |
In the Linux kernel, the following vulnerability has been resolved:
fs: dlm: fix invalid derefence of sb_lvbptr
I experience issues when putting a lkbsb on the stack and have sb_lvbptr
field to a dangled pointer while not using DLM_LKF_VALBLK. It will crash
with the following kernel message, the dangled pointer is here
0xdeadbeef as example:
[ 102.749317] BUG: unable to handle page fault for address: 00000000deadbeef
[ 102.749320] #PF: supervisor read access in kernel mode
[ 102.749323] #PF: error_code(0x0000) - not-present page
[ 102.749325] PGD 0 P4D 0
[ 102.749332] Oops: 0000 [#1] PREEMPT SMP PTI
[ 102.749336] CPU: 0 PID: 1567 Comm: lock_torture_wr Tainted: G W 5.19.0-rc3+ #1565
[ 102.749343] Hardware name: Red Hat KVM/RHEL-AV, BIOS 1.16.0-2.module+el8.7.0+15506+033991b0 04/01/2014
[ 102.749344] RIP: 0010:memcpy_erms+0x6/0x10
[ 102.749353] Code: cc cc cc cc eb 1e 0f 1f 00 48 89 f8 48 89 d1 48 c1 e9 03 83 e2 07 f3 48 a5 89 d1 f3 a4 c3 66 0f 1f 44 00 00 48 89 f8 48 89 d1 <f3> a4 c3 0f 1f 80 00 00 00 00 48 89 f8 48 83 fa 20 72 7e 40 38 fe
[ 102.749355] RSP: 0018:ffff97a58145fd08 EFLAGS: 00010202
[ 102.749358] RAX: ffff901778b77070 RBX: 0000000000000000 RCX: 0000000000000040
[ 102.749360] RDX: 0000000000000040 RSI: 00000000deadbeef RDI: ffff901778b77070
[ 102.749362] RBP: ffff97a58145fd10 R08: ffff901760b67a70 R09: 0000000000000001
[ 102.749364] R10: ffff9017008e2cb8 R11: 0000000000000001 R12: ffff901760b67a70
[ 102.749366] R13: ffff901760b78f00 R14: 0000000000000003 R15: 0000000000000001
[ 102.749368] FS: 0000000000000000(0000) GS:ffff901876e00000(0000) knlGS:0000000000000000
[ 102.749372] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 102.749374] CR2: 00000000deadbeef CR3: 000000017c49a004 CR4: 0000000000770ef0
[ 102.749376] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 102.749378] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 102.749379] PKRU: 55555554
[ 102.749381] Call Trace:
[ 102.749382] <TASK>
[ 102.749383] ? send_args+0xb2/0xd0
[ 102.749389] send_common+0xb7/0xd0
[ 102.749395] _unlock_lock+0x2c/0x90
[ 102.749400] unlock_lock.isra.56+0x62/0xa0
[ 102.749405] dlm_unlock+0x21e/0x330
[ 102.749411] ? lock_torture_stats+0x80/0x80 [dlm_locktorture]
[ 102.749416] torture_unlock+0x5a/0x90 [dlm_locktorture]
[ 102.749419] ? preempt_count_sub+0xba/0x100
[ 102.749427] lock_torture_writer+0xbd/0x150 [dlm_locktorture]
[ 102.786186] kthread+0x10a/0x130
[ 102.786581] ? kthread_complete_and_exit+0x20/0x20
[ 102.787156] ret_from_fork+0x22/0x30
[ 102.787588] </TASK>
[ 102.787855] Modules linked in: dlm_locktorture torture rpcsec_gss_krb5 intel_rapl_msr intel_rapl_common kvm_intel iTCO_wdt iTCO_vendor_support kvm vmw_vsock_virtio_transport qxl irqbypass vmw_vsock_virtio_transport_common drm_ttm_helper crc32_pclmul joydev crc32c_intel ttm vsock virtio_scsi virtio_balloon snd_pcm drm_kms_helper virtio_console snd_timer snd drm soundcore syscopyarea i2c_i801 sysfillrect sysimgblt i2c_smbus pcspkr fb_sys_fops lpc_ich serio_raw
[ 102.792536] CR2: 00000000deadbeef
[ 102.792930] ---[ end trace 0000000000000000 ]---
This patch fixes the issue by checking also on DLM_LKF_VALBLK on exflags
is set when copying the lvbptr array instead of if it's just null which
fixes for me the issue.
I think this patch can fix other dlm users as well, depending how they
handle the init, freeing memory handling of sb_lvbptr and don't set
DLM_LKF_VALBLK for some dlm_lock() calls. It might a there could be a
hidden issue all the time. However with checking on DLM_LKF_VALBLK the
user always need to provide a sb_lvbptr non-null value. There might be
more intelligent handling between per ls lvblen, DLM_LKF_VALBLK and
non-null to report the user the way how DLM API is used is wrong but can
be added for later, this will only fix the current behaviour. |
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: replace WARN_ONs by nilfs_error for checkpoint acquisition failure
If creation or finalization of a checkpoint fails due to anomalies in the
checkpoint metadata on disk, a kernel warning is generated.
This patch replaces the WARN_ONs by nilfs_error, so that a kernel, booted
with panic_on_warn, does not panic. A nilfs_error is appropriate here to
handle the abnormal filesystem condition.
This also replaces the detected error codes with an I/O error so that
neither of the internal error codes is returned to callers. |
In the Linux kernel, the following vulnerability has been resolved:
iommu/mediatek: Check return value after calling platform_get_resource()
platform_get_resource() may return NULL pointer, we need check its
return value to avoid null-ptr-deref in resource_size(). |