| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid use-after-free in ext4_ext_show_leaf()
In ext4_find_extent(), path may be freed by error or be reallocated, so
using a previously saved *ppath may have been freed and thus may trigger
use-after-free, as follows:
ext4_split_extent
path = *ppath;
ext4_split_extent_at(ppath)
path = ext4_find_extent(ppath)
ext4_split_extent_at(ppath)
// ext4_find_extent fails to free path
// but zeroout succeeds
ext4_ext_show_leaf(inode, path)
eh = path[depth].p_hdr
// path use-after-free !!!
Similar to ext4_split_extent_at(), we use *ppath directly as an input to
ext4_ext_show_leaf(). Fix a spelling error by the way.
Same problem in ext4_ext_handle_unwritten_extents(). Since 'path' is only
used in ext4_ext_show_leaf(), remove 'path' and use *ppath directly.
This issue is triggered only when EXT_DEBUG is defined and therefore does
not affect functionality. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix slab-use-after-free in ext4_split_extent_at()
We hit the following use-after-free:
==================================================================
BUG: KASAN: slab-use-after-free in ext4_split_extent_at+0xba8/0xcc0
Read of size 2 at addr ffff88810548ed08 by task kworker/u20:0/40
CPU: 0 PID: 40 Comm: kworker/u20:0 Not tainted 6.9.0-dirty #724
Call Trace:
<TASK>
kasan_report+0x93/0xc0
ext4_split_extent_at+0xba8/0xcc0
ext4_split_extent.isra.0+0x18f/0x500
ext4_split_convert_extents+0x275/0x750
ext4_ext_handle_unwritten_extents+0x73e/0x1580
ext4_ext_map_blocks+0xe20/0x2dc0
ext4_map_blocks+0x724/0x1700
ext4_do_writepages+0x12d6/0x2a70
[...]
Allocated by task 40:
__kmalloc_noprof+0x1ac/0x480
ext4_find_extent+0xf3b/0x1e70
ext4_ext_map_blocks+0x188/0x2dc0
ext4_map_blocks+0x724/0x1700
ext4_do_writepages+0x12d6/0x2a70
[...]
Freed by task 40:
kfree+0xf1/0x2b0
ext4_find_extent+0xa71/0x1e70
ext4_ext_insert_extent+0xa22/0x3260
ext4_split_extent_at+0x3ef/0xcc0
ext4_split_extent.isra.0+0x18f/0x500
ext4_split_convert_extents+0x275/0x750
ext4_ext_handle_unwritten_extents+0x73e/0x1580
ext4_ext_map_blocks+0xe20/0x2dc0
ext4_map_blocks+0x724/0x1700
ext4_do_writepages+0x12d6/0x2a70
[...]
==================================================================
The flow of issue triggering is as follows:
ext4_split_extent_at
path = *ppath
ext4_ext_insert_extent(ppath)
ext4_ext_create_new_leaf(ppath)
ext4_find_extent(orig_path)
path = *orig_path
read_extent_tree_block
// return -ENOMEM or -EIO
ext4_free_ext_path(path)
kfree(path)
*orig_path = NULL
a. If err is -ENOMEM:
ext4_ext_dirty(path + path->p_depth)
// path use-after-free !!!
b. If err is -EIO and we have EXT_DEBUG defined:
ext4_ext_show_leaf(path)
eh = path[depth].p_hdr
// path also use-after-free !!!
So when trying to zeroout or fix the extent length, call ext4_find_extent()
to update the path.
In addition we use *ppath directly as an ext4_ext_show_leaf() input to
avoid possible use-after-free when EXT_DEBUG is defined, and to avoid
unnecessary path updates. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: aovid use-after-free in ext4_ext_insert_extent()
As Ojaswin mentioned in Link, in ext4_ext_insert_extent(), if the path is
reallocated in ext4_ext_create_new_leaf(), we'll use the stale path and
cause UAF. Below is a sample trace with dummy values:
ext4_ext_insert_extent
path = *ppath = 2000
ext4_ext_create_new_leaf(ppath)
ext4_find_extent(ppath)
path = *ppath = 2000
if (depth > path[0].p_maxdepth)
kfree(path = 2000);
*ppath = path = NULL;
path = kcalloc() = 3000
*ppath = 3000;
return path;
/* here path is still 2000, UAF! */
eh = path[depth].p_hdr
==================================================================
BUG: KASAN: slab-use-after-free in ext4_ext_insert_extent+0x26d4/0x3330
Read of size 8 at addr ffff8881027bf7d0 by task kworker/u36:1/179
CPU: 3 UID: 0 PID: 179 Comm: kworker/u6:1 Not tainted 6.11.0-rc2-dirty #866
Call Trace:
<TASK>
ext4_ext_insert_extent+0x26d4/0x3330
ext4_ext_map_blocks+0xe22/0x2d40
ext4_map_blocks+0x71e/0x1700
ext4_do_writepages+0x1290/0x2800
[...]
Allocated by task 179:
ext4_find_extent+0x81c/0x1f70
ext4_ext_map_blocks+0x146/0x2d40
ext4_map_blocks+0x71e/0x1700
ext4_do_writepages+0x1290/0x2800
ext4_writepages+0x26d/0x4e0
do_writepages+0x175/0x700
[...]
Freed by task 179:
kfree+0xcb/0x240
ext4_find_extent+0x7c0/0x1f70
ext4_ext_insert_extent+0xa26/0x3330
ext4_ext_map_blocks+0xe22/0x2d40
ext4_map_blocks+0x71e/0x1700
ext4_do_writepages+0x1290/0x2800
ext4_writepages+0x26d/0x4e0
do_writepages+0x175/0x700
[...]
==================================================================
So use *ppath to update the path to avoid the above problem. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: wait for fixup workers before stopping cleaner kthread during umount
During unmount, at close_ctree(), we have the following steps in this order:
1) Park the cleaner kthread - this doesn't destroy the kthread, it basically
halts its execution (wake ups against it work but do nothing);
2) We stop the cleaner kthread - this results in freeing the respective
struct task_struct;
3) We call btrfs_stop_all_workers() which waits for any jobs running in all
the work queues and then free the work queues.
Syzbot reported a case where a fixup worker resulted in a crash when doing
a delayed iput on its inode while attempting to wake up the cleaner at
btrfs_add_delayed_iput(), because the task_struct of the cleaner kthread
was already freed. This can happen during unmount because we don't wait
for any fixup workers still running before we call kthread_stop() against
the cleaner kthread, which stops and free all its resources.
Fix this by waiting for any fixup workers at close_ctree() before we call
kthread_stop() against the cleaner and run pending delayed iputs.
The stack traces reported by syzbot were the following:
BUG: KASAN: slab-use-after-free in __lock_acquire+0x77/0x2050 kernel/locking/lockdep.c:5065
Read of size 8 at addr ffff8880272a8a18 by task kworker/u8:3/52
CPU: 1 UID: 0 PID: 52 Comm: kworker/u8:3 Not tainted 6.12.0-rc1-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Workqueue: btrfs-fixup btrfs_work_helper
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
__lock_acquire+0x77/0x2050 kernel/locking/lockdep.c:5065
lock_acquire+0x1ed/0x550 kernel/locking/lockdep.c:5825
__raw_spin_lock_irqsave include/linux/spinlock_api_smp.h:110 [inline]
_raw_spin_lock_irqsave+0xd5/0x120 kernel/locking/spinlock.c:162
class_raw_spinlock_irqsave_constructor include/linux/spinlock.h:551 [inline]
try_to_wake_up+0xb0/0x1480 kernel/sched/core.c:4154
btrfs_writepage_fixup_worker+0xc16/0xdf0 fs/btrfs/inode.c:2842
btrfs_work_helper+0x390/0xc50 fs/btrfs/async-thread.c:314
process_one_work kernel/workqueue.c:3229 [inline]
process_scheduled_works+0xa63/0x1850 kernel/workqueue.c:3310
worker_thread+0x870/0xd30 kernel/workqueue.c:3391
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Allocated by task 2:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
unpoison_slab_object mm/kasan/common.c:319 [inline]
__kasan_slab_alloc+0x66/0x80 mm/kasan/common.c:345
kasan_slab_alloc include/linux/kasan.h:247 [inline]
slab_post_alloc_hook mm/slub.c:4086 [inline]
slab_alloc_node mm/slub.c:4135 [inline]
kmem_cache_alloc_node_noprof+0x16b/0x320 mm/slub.c:4187
alloc_task_struct_node kernel/fork.c:180 [inline]
dup_task_struct+0x57/0x8c0 kernel/fork.c:1107
copy_process+0x5d1/0x3d50 kernel/fork.c:2206
kernel_clone+0x223/0x880 kernel/fork.c:2787
kernel_thread+0x1bc/0x240 kernel/fork.c:2849
create_kthread kernel/kthread.c:412 [inline]
kthreadd+0x60d/0x810 kernel/kthread.c:765
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
Freed by task 61:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:579
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x59/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:230 [inline]
slab_free_h
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: fix race between timeout and normal completion
If request timetout is handled by nbd_requeue_cmd(), normal completion
has to be stopped for avoiding to complete this requeued request, other
use-after-free can be triggered.
Fix the race by clearing NBD_CMD_INFLIGHT in nbd_requeue_cmd(), meantime
make sure that cmd->lock is grabbed for clearing the flag and the
requeue. |
| In the Linux kernel, the following vulnerability has been resolved:
block, bfq: fix uaf for accessing waker_bfqq after splitting
After commit 42c306ed7233 ("block, bfq: don't break merge chain in
bfq_split_bfqq()"), if the current procress is the last holder of bfqq,
the bfqq can be freed after bfq_split_bfqq(). Hence recored the bfqq and
then access bfqq->waker_bfqq may trigger UAF. What's more, the waker_bfqq
may in the merge chain of bfqq, hence just recored waker_bfqq is still
not safe.
Fix the problem by adding a helper bfq_waker_bfqq() to check if
bfqq->waker_bfqq is in the merge chain, and current procress is the only
holder. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: elx: libefc: Fix potential use after free in efc_nport_vport_del()
The kref_put() function will call nport->release if the refcount drops to
zero. The nport->release release function is _efc_nport_free() which frees
"nport". But then we dereference "nport" on the next line which is a use
after free. Re-order these lines to avoid the use after free. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/hns: Fix Use-After-Free of rsv_qp on HIP08
Currently rsv_qp is freed before ib_unregister_device() is called
on HIP08. During the time interval, users can still dereg MR and
rsv_qp will be used in this process, leading to a UAF. Move the
release of rsv_qp after calling ib_unregister_device() to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
vhost_vdpa: assign irq bypass producer token correctly
We used to call irq_bypass_unregister_producer() in
vhost_vdpa_setup_vq_irq() which is problematic as we don't know if the
token pointer is still valid or not.
Actually, we use the eventfd_ctx as the token so the life cycle of the
token should be bound to the VHOST_SET_VRING_CALL instead of
vhost_vdpa_setup_vq_irq() which could be called by set_status().
Fixing this by setting up irq bypass producer's token when handling
VHOST_SET_VRING_CALL and un-registering the producer before calling
vhost_vring_ioctl() to prevent a possible use after free as eventfd
could have been released in vhost_vring_ioctl(). And such registering
and unregistering will only be done if DRIVER_OK is set. |
| In the Linux kernel, the following vulnerability has been resolved:
net: seeq: Fix use after free vulnerability in ether3 Driver Due to Race Condition
In the ether3_probe function, a timer is initialized with a callback
function ether3_ledoff, bound to &prev(dev)->timer. Once the timer is
started, there is a risk of a race condition if the module or device
is removed, triggering the ether3_remove function to perform cleanup.
The sequence of operations that may lead to a UAF bug is as follows:
CPU0 CPU1
| ether3_ledoff
ether3_remove |
free_netdev(dev); |
put_devic |
kfree(dev); |
| ether3_outw(priv(dev)->regs.config2 |= CFG2_CTRLO, REG_CONFIG2);
| // use dev
Fix it by ensuring that the timer is canceled before proceeding with
the cleanup in ether3_remove. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: hisilicon/qm - inject error before stopping queue
The master ooo cannot be completely closed when the
accelerator core reports memory error. Therefore, the driver
needs to inject the qm error to close the master ooo. Currently,
the qm error is injected after stopping queue, memory may be
released immediately after stopping queue, causing the device to
access the released memory. Therefore, error is injected to close master
ooo before stopping queue to ensure that the device does not access
the released memory. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw88: always wait for both firmware loading attempts
In 'rtw_wait_firmware_completion()', always wait for both (regular and
wowlan) firmware loading attempts. Otherwise if 'rtw_usb_intf_init()'
has failed in 'rtw_usb_probe()', 'rtw_usb_disconnect()' may issue
'ieee80211_free_hw()' when one of 'rtw_load_firmware_cb()' (usually
the wowlan one) is still in progress, causing UAF detected by KASAN. |
| In the Linux kernel, the following vulnerability has been resolved:
block, bfq: fix possible UAF for bfqq->bic with merge chain
1) initial state, three tasks:
Process 1 Process 2 Process 3
(BIC1) (BIC2) (BIC3)
| Λ | Λ | Λ
| | | | | |
V | V | V |
bfqq1 bfqq2 bfqq3
process ref: 1 1 1
2) bfqq1 merged to bfqq2:
Process 1 Process 2 Process 3
(BIC1) (BIC2) (BIC3)
| | | Λ
\--------------\| | |
V V |
bfqq1--------->bfqq2 bfqq3
process ref: 0 2 1
3) bfqq2 merged to bfqq3:
Process 1 Process 2 Process 3
(BIC1) (BIC2) (BIC3)
here -> Λ | |
\--------------\ \-------------\|
V V
bfqq1--------->bfqq2---------->bfqq3
process ref: 0 1 3
In this case, IO from Process 1 will get bfqq2 from BIC1 first, and then
get bfqq3 through merge chain, and finially handle IO by bfqq3.
Howerver, current code will think bfqq2 is owned by BIC1, like initial
state, and set bfqq2->bic to BIC1.
bfq_insert_request
-> by Process 1
bfqq = bfq_init_rq(rq)
bfqq = bfq_get_bfqq_handle_split
bfqq = bic_to_bfqq
-> get bfqq2 from BIC1
bfqq->ref++
rq->elv.priv[0] = bic
rq->elv.priv[1] = bfqq
if (bfqq_process_refs(bfqq) == 1)
bfqq->bic = bic
-> record BIC1 to bfqq2
__bfq_insert_request
new_bfqq = bfq_setup_cooperator
-> get bfqq3 from bfqq2->new_bfqq
bfqq_request_freed(bfqq)
new_bfqq->ref++
rq->elv.priv[1] = new_bfqq
-> handle IO by bfqq3
Fix the problem by checking bfqq is from merge chain fist. And this
might fix a following problem reported by our syzkaller(unreproducible):
==================================================================
BUG: KASAN: slab-use-after-free in bfq_do_early_stable_merge block/bfq-iosched.c:5692 [inline]
BUG: KASAN: slab-use-after-free in bfq_do_or_sched_stable_merge block/bfq-iosched.c:5805 [inline]
BUG: KASAN: slab-use-after-free in bfq_get_queue+0x25b0/0x2610 block/bfq-iosched.c:5889
Write of size 1 at addr ffff888123839eb8 by task kworker/0:1H/18595
CPU: 0 PID: 18595 Comm: kworker/0:1H Tainted: G L 6.6.0-07439-gba2303cacfda #6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Workqueue: kblockd blk_mq_requeue_work
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x91/0xf0 lib/dump_stack.c:106
print_address_description mm/kasan/report.c:364 [inline]
print_report+0x10d/0x610 mm/kasan/report.c:475
kasan_report+0x8e/0xc0 mm/kasan/report.c:588
bfq_do_early_stable_merge block/bfq-iosched.c:5692 [inline]
bfq_do_or_sched_stable_merge block/bfq-iosched.c:5805 [inline]
bfq_get_queue+0x25b0/0x2610 block/bfq-iosched.c:5889
bfq_get_bfqq_handle_split+0x169/0x5d0 block/bfq-iosched.c:6757
bfq_init_rq block/bfq-iosched.c:6876 [inline]
bfq_insert_request block/bfq-iosched.c:6254 [inline]
bfq_insert_requests+0x1112/0x5cf0 block/bfq-iosched.c:6304
blk_mq_insert_request+0x290/0x8d0 block/blk-mq.c:2593
blk_mq_requeue_work+0x6bc/0xa70 block/blk-mq.c:1502
process_one_work kernel/workqueue.c:2627 [inline]
process_scheduled_works+0x432/0x13f0 kernel/workqueue.c:2700
worker_thread+0x6f2/0x1160 kernel/workqueue.c:2781
kthread+0x33c/0x440 kernel/kthread.c:388
ret_from_fork+0x4d/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1b/0x30 arch/x86/entry/entry_64.S:305
</TASK>
Allocated by task 20776:
kasan_save_stack+0x20/0x40 mm/kasan/common.c:45
kasan_set_track+0x25/0x30 mm/kasan/common.c:52
__kasan_slab_alloc+0x87/0x90 mm/kasan/common.c:328
kasan_slab_alloc include/linux/kasan.h:188 [inline]
slab_post_alloc_hook mm/slab.h:763 [inline]
slab_alloc_node mm/slub.c:3458 [inline]
kmem_cache_alloc_node+0x1a4/0x6f0 mm/slub.c:3503
ioc_create_icq block/blk-ioc.c:370 [inline]
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: avoid OOB when system.data xattr changes underneath the filesystem
When looking up for an entry in an inlined directory, if e_value_offs is
changed underneath the filesystem by some change in the block device, it
will lead to an out-of-bounds access that KASAN detects as an UAF.
EXT4-fs (loop0): mounted filesystem 00000000-0000-0000-0000-000000000000 r/w without journal. Quota mode: none.
loop0: detected capacity change from 2048 to 2047
==================================================================
BUG: KASAN: use-after-free in ext4_search_dir+0xf2/0x1c0 fs/ext4/namei.c:1500
Read of size 1 at addr ffff88803e91130f by task syz-executor269/5103
CPU: 0 UID: 0 PID: 5103 Comm: syz-executor269 Not tainted 6.11.0-rc4-syzkaller #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:93 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:119
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
ext4_search_dir+0xf2/0x1c0 fs/ext4/namei.c:1500
ext4_find_inline_entry+0x4be/0x5e0 fs/ext4/inline.c:1697
__ext4_find_entry+0x2b4/0x1b30 fs/ext4/namei.c:1573
ext4_lookup_entry fs/ext4/namei.c:1727 [inline]
ext4_lookup+0x15f/0x750 fs/ext4/namei.c:1795
lookup_one_qstr_excl+0x11f/0x260 fs/namei.c:1633
filename_create+0x297/0x540 fs/namei.c:3980
do_symlinkat+0xf9/0x3a0 fs/namei.c:4587
__do_sys_symlinkat fs/namei.c:4610 [inline]
__se_sys_symlinkat fs/namei.c:4607 [inline]
__x64_sys_symlinkat+0x95/0xb0 fs/namei.c:4607
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f3e73ced469
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 21 18 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fff4d40c258 EFLAGS: 00000246 ORIG_RAX: 000000000000010a
RAX: ffffffffffffffda RBX: 0032656c69662f2e RCX: 00007f3e73ced469
RDX: 0000000020000200 RSI: 00000000ffffff9c RDI: 00000000200001c0
RBP: 0000000000000000 R08: 00007fff4d40c290 R09: 00007fff4d40c290
R10: 0023706f6f6c2f76 R11: 0000000000000246 R12: 00007fff4d40c27c
R13: 0000000000000003 R14: 431bde82d7b634db R15: 00007fff4d40c2b0
</TASK>
Calling ext4_xattr_ibody_find right after reading the inode with
ext4_get_inode_loc will lead to a check of the validity of the xattrs,
avoiding this problem. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/iwcm: Fix WARNING:at_kernel/workqueue.c:#check_flush_dependency
In the commit aee2424246f9 ("RDMA/iwcm: Fix a use-after-free related to
destroying CM IDs"), the function flush_workqueue is invoked to flush the
work queue iwcm_wq.
But at that time, the work queue iwcm_wq was created via the function
alloc_ordered_workqueue without the flag WQ_MEM_RECLAIM.
Because the current process is trying to flush the whole iwcm_wq, if
iwcm_wq doesn't have the flag WQ_MEM_RECLAIM, verify that the current
process is not reclaiming memory or running on a workqueue which doesn't
have the flag WQ_MEM_RECLAIM as that can break forward-progress guarantee
leading to a deadlock.
The call trace is as below:
[ 125.350876][ T1430] Call Trace:
[ 125.356281][ T1430] <TASK>
[ 125.361285][ T1430] ? __warn (kernel/panic.c:693)
[ 125.367640][ T1430] ? check_flush_dependency (kernel/workqueue.c:3706 (discriminator 9))
[ 125.375689][ T1430] ? report_bug (lib/bug.c:180 lib/bug.c:219)
[ 125.382505][ T1430] ? handle_bug (arch/x86/kernel/traps.c:239)
[ 125.388987][ T1430] ? exc_invalid_op (arch/x86/kernel/traps.c:260 (discriminator 1))
[ 125.395831][ T1430] ? asm_exc_invalid_op (arch/x86/include/asm/idtentry.h:621)
[ 125.403125][ T1430] ? check_flush_dependency (kernel/workqueue.c:3706 (discriminator 9))
[ 125.410984][ T1430] ? check_flush_dependency (kernel/workqueue.c:3706 (discriminator 9))
[ 125.418764][ T1430] __flush_workqueue (kernel/workqueue.c:3970)
[ 125.426021][ T1430] ? __pfx___might_resched (kernel/sched/core.c:10151)
[ 125.433431][ T1430] ? destroy_cm_id (drivers/infiniband/core/iwcm.c:375) iw_cm
[ 125.441209][ T1430] ? __pfx___flush_workqueue (kernel/workqueue.c:3910)
[ 125.473900][ T1430] ? _raw_spin_lock_irqsave (arch/x86/include/asm/atomic.h:107 include/linux/atomic/atomic-arch-fallback.h:2170 include/linux/atomic/atomic-instrumented.h:1302 include/asm-generic/qspinlock.h:111 include/linux/spinlock.h:187 include/linux/spinlock_api_smp.h:111 kernel/locking/spinlock.c:162)
[ 125.473909][ T1430] ? __pfx__raw_spin_lock_irqsave (kernel/locking/spinlock.c:161)
[ 125.482537][ T1430] _destroy_id (drivers/infiniband/core/cma.c:2044) rdma_cm
[ 125.495072][ T1430] nvme_rdma_free_queue (drivers/nvme/host/rdma.c:656 drivers/nvme/host/rdma.c:650) nvme_rdma
[ 125.505827][ T1430] nvme_rdma_reset_ctrl_work (drivers/nvme/host/rdma.c:2180) nvme_rdma
[ 125.505831][ T1430] process_one_work (kernel/workqueue.c:3231)
[ 125.515122][ T1430] worker_thread (kernel/workqueue.c:3306 kernel/workqueue.c:3393)
[ 125.515127][ T1430] ? __pfx_worker_thread (kernel/workqueue.c:3339)
[ 125.531837][ T1430] kthread (kernel/kthread.c:389)
[ 125.539864][ T1430] ? __pfx_kthread (kernel/kthread.c:342)
[ 125.550628][ T1430] ret_from_fork (arch/x86/kernel/process.c:147)
[ 125.558840][ T1430] ? __pfx_kthread (kernel/kthread.c:342)
[ 125.558844][ T1430] ret_from_fork_asm (arch/x86/entry/entry_64.S:257)
[ 125.566487][ T1430] </TASK>
[ 125.566488][ T1430] ---[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
mptcp: pm: Fix uaf in __timer_delete_sync
There are two paths to access mptcp_pm_del_add_timer, result in a race
condition:
CPU1 CPU2
==== ====
net_rx_action
napi_poll netlink_sendmsg
__napi_poll netlink_unicast
process_backlog netlink_unicast_kernel
__netif_receive_skb genl_rcv
__netif_receive_skb_one_core netlink_rcv_skb
NF_HOOK genl_rcv_msg
ip_local_deliver_finish genl_family_rcv_msg
ip_protocol_deliver_rcu genl_family_rcv_msg_doit
tcp_v4_rcv mptcp_pm_nl_flush_addrs_doit
tcp_v4_do_rcv mptcp_nl_remove_addrs_list
tcp_rcv_established mptcp_pm_remove_addrs_and_subflows
tcp_data_queue remove_anno_list_by_saddr
mptcp_incoming_options mptcp_pm_del_add_timer
mptcp_pm_del_add_timer kfree(entry)
In remove_anno_list_by_saddr(running on CPU2), after leaving the critical
zone protected by "pm.lock", the entry will be released, which leads to the
occurrence of uaf in the mptcp_pm_del_add_timer(running on CPU1).
Keeping a reference to add_timer inside the lock, and calling
sk_stop_timer_sync() with this reference, instead of "entry->add_timer".
Move list_del(&entry->list) to mptcp_pm_del_add_timer and inside the pm lock,
do not directly access any members of the entry outside the pm lock, which
can avoid similar "entry->x" uaf. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: meson: axg-card: fix 'use-after-free'
Buffer 'card->dai_link' is reallocated in 'meson_card_reallocate_links()',
so move 'pad' pointer initialization after this function when memory is
already reallocated.
Kasan bug report:
==================================================================
BUG: KASAN: slab-use-after-free in axg_card_add_link+0x76c/0x9bc
Read of size 8 at addr ffff000000e8b260 by task modprobe/356
CPU: 0 PID: 356 Comm: modprobe Tainted: G O 6.9.12-sdkernel #1
Call trace:
dump_backtrace+0x94/0xec
show_stack+0x18/0x24
dump_stack_lvl+0x78/0x90
print_report+0xfc/0x5c0
kasan_report+0xb8/0xfc
__asan_load8+0x9c/0xb8
axg_card_add_link+0x76c/0x9bc [snd_soc_meson_axg_sound_card]
meson_card_probe+0x344/0x3b8 [snd_soc_meson_card_utils]
platform_probe+0x8c/0xf4
really_probe+0x110/0x39c
__driver_probe_device+0xb8/0x18c
driver_probe_device+0x108/0x1d8
__driver_attach+0xd0/0x25c
bus_for_each_dev+0xe0/0x154
driver_attach+0x34/0x44
bus_add_driver+0x134/0x294
driver_register+0xa8/0x1e8
__platform_driver_register+0x44/0x54
axg_card_pdrv_init+0x20/0x1000 [snd_soc_meson_axg_sound_card]
do_one_initcall+0xdc/0x25c
do_init_module+0x10c/0x334
load_module+0x24c4/0x26cc
init_module_from_file+0xd4/0x128
__arm64_sys_finit_module+0x1f4/0x41c
invoke_syscall+0x60/0x188
el0_svc_common.constprop.0+0x78/0x13c
do_el0_svc+0x30/0x40
el0_svc+0x38/0x78
el0t_64_sync_handler+0x100/0x12c
el0t_64_sync+0x190/0x194 |
| In the Linux kernel, the following vulnerability has been resolved:
spi: rockchip: Resolve unbalanced runtime PM / system PM handling
Commit e882575efc77 ("spi: rockchip: Suspend and resume the bus during
NOIRQ_SYSTEM_SLEEP_PM ops") stopped respecting runtime PM status and
simply disabled clocks unconditionally when suspending the system. This
causes problems when the device is already runtime suspended when we go
to sleep -- in which case we double-disable clocks and produce a
WARNing.
Switch back to pm_runtime_force_{suspend,resume}(), because that still
seems like the right thing to do, and the aforementioned commit makes no
explanation why it stopped using it.
Also, refactor some of the resume() error handling, because it's not
actually a good idea to re-disable clocks on failure. |
| In the Linux kernel, the following vulnerability has been resolved:
sch/netem: fix use after free in netem_dequeue
If netem_dequeue() enqueues packet to inner qdisc and that qdisc
returns __NET_XMIT_STOLEN. The packet is dropped but
qdisc_tree_reduce_backlog() is not called to update the parent's
q.qlen, leading to the similar use-after-free as Commit
e04991a48dbaf382 ("netem: fix return value if duplicate enqueue
fails")
Commands to trigger KASAN UaF:
ip link add type dummy
ip link set lo up
ip link set dummy0 up
tc qdisc add dev lo parent root handle 1: drr
tc filter add dev lo parent 1: basic classid 1:1
tc class add dev lo classid 1:1 drr
tc qdisc add dev lo parent 1:1 handle 2: netem
tc qdisc add dev lo parent 2: handle 3: drr
tc filter add dev lo parent 3: basic classid 3:1 action mirred egress
redirect dev dummy0
tc class add dev lo classid 3:1 drr
ping -c1 -W0.01 localhost # Trigger bug
tc class del dev lo classid 1:1
tc class add dev lo classid 1:1 drr
ping -c1 -W0.01 localhost # UaF |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: dapm: Fix UAF for snd_soc_pcm_runtime object
When using kernel with the following extra config,
- CONFIG_KASAN=y
- CONFIG_KASAN_GENERIC=y
- CONFIG_KASAN_INLINE=y
- CONFIG_KASAN_VMALLOC=y
- CONFIG_FRAME_WARN=4096
kernel detects that snd_pcm_suspend_all() access a freed
'snd_soc_pcm_runtime' object when the system is suspended, which
leads to a use-after-free bug:
[ 52.047746] BUG: KASAN: use-after-free in snd_pcm_suspend_all+0x1a8/0x270
[ 52.047765] Read of size 1 at addr ffff0000b9434d50 by task systemd-sleep/2330
[ 52.047785] Call trace:
[ 52.047787] dump_backtrace+0x0/0x3c0
[ 52.047794] show_stack+0x34/0x50
[ 52.047797] dump_stack_lvl+0x68/0x8c
[ 52.047802] print_address_description.constprop.0+0x74/0x2c0
[ 52.047809] kasan_report+0x210/0x230
[ 52.047815] __asan_report_load1_noabort+0x3c/0x50
[ 52.047820] snd_pcm_suspend_all+0x1a8/0x270
[ 52.047824] snd_soc_suspend+0x19c/0x4e0
The snd_pcm_sync_stop() has a NULL check on 'substream->runtime' before
making any access. So we need to always set 'substream->runtime' to NULL
everytime we kfree() it. |