CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
nvme-fc: Prevent null pointer dereference in nvme_fc_io_getuuid()
The nvme_fc_fcp_op structure describing an AEN operation is initialized with a
null request structure pointer. An FC LLDD may make a call to
nvme_fc_io_getuuid passing a pointer to an nvmefc_fcp_req for an AEN operation.
Add validation of the request structure pointer before dereference. |
A vulnerability classified as problematic was found in WebAssembly wabt 1.0.36. Affected by this vulnerability is the function BinaryReaderInterp::BeginFunctionBody of the file src/interp/binary-reader-interp.cc. The manipulation leads to null pointer dereference. The attack can be launched remotely. The complexity of an attack is rather high. The exploitation appears to be difficult. The exploit has been disclosed to the public and may be used. |
When HTTP/2 client and server profile is configured on a virtual server, undisclosed requests can cause TMM to terminate.
Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated |
When a Session Initiation Protocol (SIP) message routing framework (MRF) application layer gateway (ALG) profile is configured on a Message Routing virtual server, undisclosed requests can cause the Traffic Management Microkernel (TMM) to terminate.
Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. |
In Rollback Rx Professional 12.8.0.0, the driver file shieldm.sys allows local users to cause a denial of service because of a null pointer dereference from IOCtl 0x96202000. |
In the Linux kernel, the following vulnerability has been resolved:
mm/migrate: fix shmem xarray update during migration
A shmem folio can be either in page cache or in swap cache, but not at the
same time. Namely, once it is in swap cache, folio->mapping should be
NULL, and the folio is no longer in a shmem mapping.
In __folio_migrate_mapping(), to determine the number of xarray entries to
update, folio_test_swapbacked() is used, but that conflates shmem in page
cache case and shmem in swap cache case. It leads to xarray multi-index
entry corruption, since it turns a sibling entry to a normal entry during
xas_store() (see [1] for a userspace reproduction). Fix it by only using
folio_test_swapcache() to determine whether xarray is storing swap cache
entries or not to choose the right number of xarray entries to update.
[1] https://lore.kernel.org/linux-mm/Z8idPCkaJW1IChjT@casper.infradead.org/
Note:
In __split_huge_page(), folio_test_anon() && folio_test_swapcache() is
used to get swap_cache address space, but that ignores the shmem folio in
swap cache case. It could lead to NULL pointer dereferencing when a
in-swap-cache shmem folio is split at __xa_store(), since
!folio_test_anon() is true and folio->mapping is NULL. But fortunately,
its caller split_huge_page_to_list_to_order() bails out early with EBUSY
when folio->mapping is NULL. So no need to take care of it here. |
In the Linux kernel, the following vulnerability has been resolved:
xen/privcmd: fix error exit of privcmd_ioctl_dm_op()
The error exit of privcmd_ioctl_dm_op() is calling unlock_pages()
potentially with pages being NULL, leading to a NULL dereference.
Additionally lock_pages() doesn't check for pin_user_pages_fast()
having been completely successful, resulting in potentially not
locking all pages into memory. This could result in sporadic failures
when using the related memory in user mode.
Fix all of that by calling unlock_pages() always with the real number
of pinned pages, which will be zero in case pages being NULL, and by
checking the number of pages pinned by pin_user_pages_fast() matching
the expected number of pages. |
In the Linux kernel, the following vulnerability has been resolved:
tracing/eprobes: Do not allow eprobes to use $stack, or % for regs
While playing with event probes (eprobes), I tried to see what would
happen if I attempted to retrieve the instruction pointer (%rip) knowing
that event probes do not use pt_regs. The result was:
BUG: kernel NULL pointer dereference, address: 0000000000000024
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 0 P4D 0
Oops: 0000 [#1] PREEMPT SMP PTI
CPU: 1 PID: 1847 Comm: trace-cmd Not tainted 5.19.0-rc5-test+ #309
Hardware name: Hewlett-Packard HP Compaq Pro 6300 SFF/339A, BIOS K01
v03.03 07/14/2016
RIP: 0010:get_event_field.isra.0+0x0/0x50
Code: ff 48 c7 c7 c0 8f 74 a1 e8 3d 8b f5 ff e8 88 09 f6 ff 4c 89 e7 e8
50 6a 13 00 48 89 ef 5b 5d 41 5c 41 5d e9 42 6a 13 00 66 90 <48> 63 47 24
8b 57 2c 48 01 c6 8b 47 28 83 f8 02 74 0e 83 f8 04 74
RSP: 0018:ffff916c394bbaf0 EFLAGS: 00010086
RAX: ffff916c854041d8 RBX: ffff916c8d9fbf50 RCX: ffff916c255d2000
RDX: 0000000000000000 RSI: ffff916c255d2008 RDI: 0000000000000000
RBP: 0000000000000000 R08: ffff916c3a2a0c08 R09: ffff916c394bbda8
R10: 0000000000000000 R11: 0000000000000000 R12: ffff916c854041d8
R13: ffff916c854041b0 R14: 0000000000000000 R15: 0000000000000000
FS: 0000000000000000(0000) GS:ffff916c9ea40000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000000000024 CR3: 000000011b60a002 CR4: 00000000001706e0
Call Trace:
<TASK>
get_eprobe_size+0xb4/0x640
? __mod_node_page_state+0x72/0xc0
__eprobe_trace_func+0x59/0x1a0
? __mod_lruvec_page_state+0xaa/0x1b0
? page_remove_file_rmap+0x14/0x230
? page_remove_rmap+0xda/0x170
event_triggers_call+0x52/0xe0
trace_event_buffer_commit+0x18f/0x240
trace_event_raw_event_sched_wakeup_template+0x7a/0xb0
try_to_wake_up+0x260/0x4c0
__wake_up_common+0x80/0x180
__wake_up_common_lock+0x7c/0xc0
do_notify_parent+0x1c9/0x2a0
exit_notify+0x1a9/0x220
do_exit+0x2ba/0x450
do_group_exit+0x2d/0x90
__x64_sys_exit_group+0x14/0x20
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Obviously this is not the desired result.
Move the testing for TPARG_FL_TPOINT which is only used for event probes
to the top of the "$" variable check, as all the other variables are not
used for event probes. Also add a check in the register parsing "%" to
fail if an event probe is used. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: zoned: clone zoned device info when cloning a device
When cloning a btrfs_device, we're not cloning the associated
btrfs_zoned_device_info structure of the device in case of a zoned
filesystem.
Later on this leads to a NULL pointer dereference when accessing the
device's zone_info for instance when setting a zone as active.
This was uncovered by fstests' testcase btrfs/161. |
An issue in coap_msg.c in Keith Cullen's FreeCoAP v.0.7 allows remote attackers to cause a Denial of Service or potentially disclose information via a specially crafted packet. |
An issue was discovered in Samsung Mobile Processor Exynos 1480 and 2400. The absence of a null check leads to a Denial of Service at amdgpu_cs_parser_bos in the Xclipse Driver. |
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix NULL dereference at band check in starting tx ba session
In MLD connection, link_data/link_conf are dynamically allocated. They
don't point to vif->bss_conf. So, there will be no chanreq assigned to
vif->bss_conf and then the chan will be NULL. Tweak the code to check
ht_supported/vht_supported/has_he/has_eht on sta deflink.
Crash log (with rtw89 version under MLO development):
[ 9890.526087] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 9890.526102] #PF: supervisor read access in kernel mode
[ 9890.526105] #PF: error_code(0x0000) - not-present page
[ 9890.526109] PGD 0 P4D 0
[ 9890.526114] Oops: 0000 [#1] PREEMPT SMP PTI
[ 9890.526119] CPU: 2 PID: 6367 Comm: kworker/u16:2 Kdump: loaded Tainted: G OE 6.9.0 #1
[ 9890.526123] Hardware name: LENOVO 2356AD1/2356AD1, BIOS G7ETB3WW (2.73 ) 11/28/2018
[ 9890.526126] Workqueue: phy2 rtw89_core_ba_work [rtw89_core]
[ 9890.526203] RIP: 0010:ieee80211_start_tx_ba_session (net/mac80211/agg-tx.c:618 (discriminator 1)) mac80211
[ 9890.526279] Code: f7 e8 d5 93 3e ea 48 83 c4 28 89 d8 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc 49 8b 84 24 e0 f1 ff ff 48 8b 80 90 1b 00 00 <83> 38 03 0f 84 37 fe ff ff bb ea ff ff ff eb cc 49 8b 84 24 10 f3
All code
========
0: f7 e8 imul %eax
2: d5 (bad)
3: 93 xchg %eax,%ebx
4: 3e ea ds (bad)
6: 48 83 c4 28 add $0x28,%rsp
a: 89 d8 mov %ebx,%eax
c: 5b pop %rbx
d: 41 5c pop %r12
f: 41 5d pop %r13
11: 41 5e pop %r14
13: 41 5f pop %r15
15: 5d pop %rbp
16: c3 retq
17: cc int3
18: cc int3
19: cc int3
1a: cc int3
1b: 49 8b 84 24 e0 f1 ff mov -0xe20(%r12),%rax
22: ff
23: 48 8b 80 90 1b 00 00 mov 0x1b90(%rax),%rax
2a:* 83 38 03 cmpl $0x3,(%rax) <-- trapping instruction
2d: 0f 84 37 fe ff ff je 0xfffffffffffffe6a
33: bb ea ff ff ff mov $0xffffffea,%ebx
38: eb cc jmp 0x6
3a: 49 rex.WB
3b: 8b .byte 0x8b
3c: 84 24 10 test %ah,(%rax,%rdx,1)
3f: f3 repz
Code starting with the faulting instruction
===========================================
0: 83 38 03 cmpl $0x3,(%rax)
3: 0f 84 37 fe ff ff je 0xfffffffffffffe40
9: bb ea ff ff ff mov $0xffffffea,%ebx
e: eb cc jmp 0xffffffffffffffdc
10: 49 rex.WB
11: 8b .byte 0x8b
12: 84 24 10 test %ah,(%rax,%rdx,1)
15: f3 repz
[ 9890.526285] RSP: 0018:ffffb8db09013d68 EFLAGS: 00010246
[ 9890.526291] RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff9308e0d656c8
[ 9890.526295] RDX: 0000000000000000 RSI: ffffffffab99460b RDI: ffffffffab9a7685
[ 9890.526300] RBP: ffffb8db09013db8 R08: 0000000000000000 R09: 0000000000000873
[ 9890.526304] R10: ffff9308e0d64800 R11: 0000000000000002 R12: ffff9308e5ff6e70
[ 9890.526308] R13: ffff930952500e20 R14: ffff9309192a8c00 R15: 0000000000000000
[ 9890.526313] FS: 0000000000000000(0000) GS:ffff930b4e700000(0000) knlGS:0000000000000000
[ 9890.526316] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 9890.526318] CR2: 0000000000000000 CR3: 0000000391c58005 CR4: 00000000001706f0
[ 9890.526321] Call Trace:
[ 9890.526324] <TASK>
[ 9890.526327] ? show_regs (arch/x86/kernel/dumpstack.c:479)
[ 9890.526335] ? __die (arch/x86/kernel/dumpstack.c:421 arch/x86/kernel/dumpstack.c:434)
[ 9890.526340] ? page_fault_oops (arch/x86/mm/fault.c:713)
[ 9890.526347] ? search_module_extables (kernel/module/main.c:3256 (discriminator
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
XArray: Fix xas_create_range() when multi-order entry present
If there is already an entry present that is of order >= XA_CHUNK_SHIFT
when we call xas_create_range(), xas_create_range() will misinterpret
that entry as a node and dereference xa_node->parent, generally leading
to a crash that looks something like this:
general protection fault, probably for non-canonical address 0xdffffc0000000001:
0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
CPU: 0 PID: 32 Comm: khugepaged Not tainted 5.17.0-rc8-syzkaller-00003-g56e337f2cf13 #0
RIP: 0010:xa_parent_locked include/linux/xarray.h:1207 [inline]
RIP: 0010:xas_create_range+0x2d9/0x6e0 lib/xarray.c:725
It's deterministically reproducable once you know what the problem is,
but producing it in a live kernel requires khugepaged to hit a race.
While the problem has been present since xas_create_range() was
introduced, I'm not aware of a way to hit it before the page cache was
converted to use multi-index entries. |
In the Linux kernel, the following vulnerability has been resolved:
nvmet-tcp: don't restore null sk_state_change
queue->state_change is set as part of nvmet_tcp_set_queue_sock(), but if
the TCP connection isn't established when nvmet_tcp_set_queue_sock() is
called then queue->state_change isn't set and sock->sk->sk_state_change
isn't replaced.
As such we don't need to restore sock->sk->sk_state_change if
queue->state_change is NULL.
This avoids NULL pointer dereferences such as this:
[ 286.462026][ C0] BUG: kernel NULL pointer dereference, address: 0000000000000000
[ 286.462814][ C0] #PF: supervisor instruction fetch in kernel mode
[ 286.463796][ C0] #PF: error_code(0x0010) - not-present page
[ 286.464392][ C0] PGD 8000000140620067 P4D 8000000140620067 PUD 114201067 PMD 0
[ 286.465086][ C0] Oops: Oops: 0010 [#1] SMP KASAN PTI
[ 286.465559][ C0] CPU: 0 UID: 0 PID: 1628 Comm: nvme Not tainted 6.15.0-rc2+ #11 PREEMPT(voluntary)
[ 286.466393][ C0] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
[ 286.467147][ C0] RIP: 0010:0x0
[ 286.467420][ C0] Code: Unable to access opcode bytes at 0xffffffffffffffd6.
[ 286.467977][ C0] RSP: 0018:ffff8883ae008580 EFLAGS: 00010246
[ 286.468425][ C0] RAX: 0000000000000000 RBX: ffff88813fd34100 RCX: ffffffffa386cc43
[ 286.469019][ C0] RDX: 1ffff11027fa68b6 RSI: 0000000000000008 RDI: ffff88813fd34100
[ 286.469545][ C0] RBP: ffff88813fd34160 R08: 0000000000000000 R09: ffffed1027fa682c
[ 286.470072][ C0] R10: ffff88813fd34167 R11: 0000000000000000 R12: ffff88813fd344c3
[ 286.470585][ C0] R13: ffff88813fd34112 R14: ffff88813fd34aec R15: ffff888132cdd268
[ 286.471070][ C0] FS: 00007fe3c04c7d80(0000) GS:ffff88840743f000(0000) knlGS:0000000000000000
[ 286.471644][ C0] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 286.472543][ C0] CR2: ffffffffffffffd6 CR3: 000000012daca000 CR4: 00000000000006f0
[ 286.473500][ C0] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 286.474467][ C0] DR3: 0000000000000000 DR6: 00000000ffff07f0 DR7: 0000000000000400
[ 286.475453][ C0] Call Trace:
[ 286.476102][ C0] <IRQ>
[ 286.476719][ C0] tcp_fin+0x2bb/0x440
[ 286.477429][ C0] tcp_data_queue+0x190f/0x4e60
[ 286.478174][ C0] ? __build_skb_around+0x234/0x330
[ 286.478940][ C0] ? rcu_is_watching+0x11/0xb0
[ 286.479659][ C0] ? __pfx_tcp_data_queue+0x10/0x10
[ 286.480431][ C0] ? tcp_try_undo_loss+0x640/0x6c0
[ 286.481196][ C0] ? seqcount_lockdep_reader_access.constprop.0+0x82/0x90
[ 286.482046][ C0] ? kvm_clock_get_cycles+0x14/0x30
[ 286.482769][ C0] ? ktime_get+0x66/0x150
[ 286.483433][ C0] ? rcu_is_watching+0x11/0xb0
[ 286.484146][ C0] tcp_rcv_established+0x6e4/0x2050
[ 286.484857][ C0] ? rcu_is_watching+0x11/0xb0
[ 286.485523][ C0] ? ipv4_dst_check+0x160/0x2b0
[ 286.486203][ C0] ? __pfx_tcp_rcv_established+0x10/0x10
[ 286.486917][ C0] ? lock_release+0x217/0x2c0
[ 286.487595][ C0] tcp_v4_do_rcv+0x4d6/0x9b0
[ 286.488279][ C0] tcp_v4_rcv+0x2af8/0x3e30
[ 286.488904][ C0] ? raw_local_deliver+0x51b/0xad0
[ 286.489551][ C0] ? rcu_is_watching+0x11/0xb0
[ 286.490198][ C0] ? __pfx_tcp_v4_rcv+0x10/0x10
[ 286.490813][ C0] ? __pfx_raw_local_deliver+0x10/0x10
[ 286.491487][ C0] ? __pfx_nf_confirm+0x10/0x10 [nf_conntrack]
[ 286.492275][ C0] ? rcu_is_watching+0x11/0xb0
[ 286.492900][ C0] ip_protocol_deliver_rcu+0x8f/0x370
[ 286.493579][ C0] ip_local_deliver_finish+0x297/0x420
[ 286.494268][ C0] ip_local_deliver+0x168/0x430
[ 286.494867][ C0] ? __pfx_ip_local_deliver+0x10/0x10
[ 286.495498][ C0] ? __pfx_ip_local_deliver_finish+0x10/0x10
[ 286.496204][ C0] ? ip_rcv_finish_core+0x19a/0x1f20
[ 286.496806][ C0] ? lock_release+0x217/0x2c0
[ 286.497414][ C0] ip_rcv+0x455/0x6e0
[ 286.497945][ C0] ? __pfx_ip_rcv+0x10/0x10
[
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: aspeed: Add NULL pointer check in ast_vhub_init_dev()
The variable d->name, returned by devm_kasprintf(), could be NULL.
A pointer check is added to prevent potential NULL pointer dereference.
This is similar to the fix in commit 3027e7b15b02
("ice: Fix some null pointer dereference issues in ice_ptp.c").
This issue is found by our static analysis tool |
In the Linux kernel, the following vulnerability has been resolved:
KVM: Don't null dereference ops->destroy
A KVM device cleanup happens in either of two callbacks:
1) destroy() which is called when the VM is being destroyed;
2) release() which is called when a device fd is closed.
Most KVM devices use 1) but Book3s's interrupt controller KVM devices
(XICS, XIVE, XIVE-native) use 2) as they need to close and reopen during
the machine execution. The error handling in kvm_ioctl_create_device()
assumes destroy() is always defined which leads to NULL dereference as
discovered by Syzkaller.
This adds a checks for destroy!=NULL and adds a missing release().
This is not changing kvm_destroy_devices() as devices with defined
release() should have been removed from the KVM devices list by then. |
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (w83791d) Fix NULL pointer dereference by removing unnecessary structure field
If driver read val value sufficient for
(val & 0x08) && (!(val & 0x80)) && ((val & 0x7) == ((val >> 4) & 0x7))
from device then Null pointer dereference occurs.
(It is possible if tmp = 0b0xyz1xyz, where same literals mean same numbers)
Also lm75[] does not serve a purpose anymore after switching to
devm_i2c_new_dummy_device() in w83791d_detect_subclients().
The patch fixes possible NULL pointer dereference by removing lm75[].
Found by Linux Driver Verification project (linuxtesting.org).
[groeck: Dropped unnecessary continuation lines, fixed multi-line alignment] |
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (w83792d) Fix NULL pointer dereference by removing unnecessary structure field
If driver read val value sufficient for
(val & 0x08) && (!(val & 0x80)) && ((val & 0x7) == ((val >> 4) & 0x7))
from device then Null pointer dereference occurs.
(It is possible if tmp = 0b0xyz1xyz, where same literals mean same numbers)
Also lm75[] does not serve a purpose anymore after switching to
devm_i2c_new_dummy_device() in w83791d_detect_subclients().
The patch fixes possible NULL pointer dereference by removing lm75[].
Found by Linux Driver Verification project (linuxtesting.org).
[groeck: Dropped unnecessary continuation lines, fixed multipline alignment] |