| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
Revert "arm64: dts: qcom: sdm845: Affirm IDR0.CCTW on apps_smmu"
There are reports that the pagetable walker cache coherency is not a
given across the spectrum of SDM845/850 devices, leading to lock-ups
and resets. It works fine on some devices (like the Dragonboard 845c,
but not so much on the Lenovo Yoga C630).
This unfortunately looks like a fluke in firmware development, where
likely somewhere in the vast hypervisor stack, a change to accommodate
for this was only introduced after the initial software release (which
often serves as a baseline for products).
Revert the change to avoid additional guesswork around crashes.
This reverts commit 6b31a9744b8726c69bb0af290f8475a368a4b805. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix deadlock in nilfs_count_free_blocks()
A semaphore deadlock can occur if nilfs_get_block() detects metadata
corruption while locating data blocks and a superblock writeback occurs at
the same time:
task 1 task 2
------ ------
* A file operation *
nilfs_truncate()
nilfs_get_block()
down_read(rwsem A) <--
nilfs_bmap_lookup_contig()
... generic_shutdown_super()
nilfs_put_super()
* Prepare to write superblock *
down_write(rwsem B) <--
nilfs_cleanup_super()
* Detect b-tree corruption * nilfs_set_log_cursor()
nilfs_bmap_convert_error() nilfs_count_free_blocks()
__nilfs_error() down_read(rwsem A) <--
nilfs_set_error()
down_write(rwsem B) <--
*** DEADLOCK ***
Here, nilfs_get_block() readlocks rwsem A (= NILFS_MDT(dat_inode)->mi_sem)
and then calls nilfs_bmap_lookup_contig(), but if it fails due to metadata
corruption, __nilfs_error() is called from nilfs_bmap_convert_error()
inside the lock section.
Since __nilfs_error() calls nilfs_set_error() unless the filesystem is
read-only and nilfs_set_error() attempts to writelock rwsem B (=
nilfs->ns_sem) to write back superblock exclusively, hierarchical lock
acquisition occurs in the order rwsem A -> rwsem B.
Now, if another task starts updating the superblock, it may writelock
rwsem B during the lock sequence above, and can deadlock trying to
readlock rwsem A in nilfs_count_free_blocks().
However, there is actually no need to take rwsem A in
nilfs_count_free_blocks() because it, within the lock section, only reads
a single integer data on a shared struct with
nilfs_sufile_get_ncleansegs(). This has been the case after commit
aa474a220180 ("nilfs2: add local variable to cache the number of clean
segments"), that is, even before this bug was introduced.
So, this resolves the deadlock problem by just not taking the semaphore in
nilfs_count_free_blocks(). |
| The strcmp implementation optimized for the Power10 processor in the GNU C Library version 2.39 and later writes to vector registers v20 to v31 without saving contents from the caller (those registers are defined as non-volatile registers by the powerpc64le ABI), resulting in overwriting of its contents and potentially altering control flow of the caller, or leaking the input strings to the function to other parts of the program. |
| In the Linux kernel, the following vulnerability has been resolved:
net: ks8851: Queue RX packets in IRQ handler instead of disabling BHs
Currently the driver uses local_bh_disable()/local_bh_enable() in its
IRQ handler to avoid triggering net_rx_action() softirq on exit from
netif_rx(). The net_rx_action() could trigger this driver .start_xmit
callback, which is protected by the same lock as the IRQ handler, so
calling the .start_xmit from netif_rx() from the IRQ handler critical
section protected by the lock could lead to an attempt to claim the
already claimed lock, and a hang.
The local_bh_disable()/local_bh_enable() approach works only in case
the IRQ handler is protected by a spinlock, but does not work if the
IRQ handler is protected by mutex, i.e. this works for KS8851 with
Parallel bus interface, but not for KS8851 with SPI bus interface.
Remove the BH manipulation and instead of calling netif_rx() inside
the IRQ handler code protected by the lock, queue all the received
SKBs in the IRQ handler into a queue first, and once the IRQ handler
exits the critical section protected by the lock, dequeue all the
queued SKBs and push them all into netif_rx(). At this point, it is
safe to trigger the net_rx_action() softirq, since the netif_rx()
call is outside of the lock that protects the IRQ handler. |
| In the Linux kernel, the following vulnerability has been resolved:
net: hns3: fix kernel crash when devlink reload during pf initialization
The devlink reload process will access the hardware resources,
but the register operation is done before the hardware is initialized.
So, processing the devlink reload during initialization may lead to kernel
crash. This patch fixes this by taking devl_lock during initialization. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: core: Make do_proc_control() and do_proc_bulk() killable
The USBDEVFS_CONTROL and USBDEVFS_BULK ioctls invoke
usb_start_wait_urb(), which contains an uninterruptible wait with a
user-specified timeout value. If timeout value is very large and the
device being accessed does not respond in a reasonable amount of time,
the kernel will complain about "Task X blocked for more than N
seconds", as found in testing by syzbot:
INFO: task syz-executor.0:8700 blocked for more than 143 seconds.
Not tainted 5.14.0-rc7-syzkaller #0
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:syz-executor.0 state:D stack:23192 pid: 8700 ppid: 8455 flags:0x00004004
Call Trace:
context_switch kernel/sched/core.c:4681 [inline]
__schedule+0xc07/0x11f0 kernel/sched/core.c:5938
schedule+0x14b/0x210 kernel/sched/core.c:6017
schedule_timeout+0x98/0x2f0 kernel/time/timer.c:1857
do_wait_for_common+0x2da/0x480 kernel/sched/completion.c:85
__wait_for_common kernel/sched/completion.c:106 [inline]
wait_for_common kernel/sched/completion.c:117 [inline]
wait_for_completion_timeout+0x46/0x60 kernel/sched/completion.c:157
usb_start_wait_urb+0x167/0x550 drivers/usb/core/message.c:63
do_proc_bulk+0x978/0x1080 drivers/usb/core/devio.c:1236
proc_bulk drivers/usb/core/devio.c:1273 [inline]
usbdev_do_ioctl drivers/usb/core/devio.c:2547 [inline]
usbdev_ioctl+0x3441/0x6b10 drivers/usb/core/devio.c:2713
...
To fix this problem, this patch replaces usbfs's calls to
usb_control_msg() and usb_bulk_msg() with special-purpose code that
does essentially the same thing (as recommended in the comment for
usb_start_wait_urb()), except that it always uses a killable wait and
it uses GFP_KERNEL rather than GFP_NOIO. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: khugepaged: skip huge page collapse for special files
The read-only THP for filesystems will collapse THP for files opened
readonly and mapped with VM_EXEC. The intended usecase is to avoid TLB
misses for large text segments. But it doesn't restrict the file types
so a THP could be collapsed for a non-regular file, for example, block
device, if it is opened readonly and mapped with EXEC permission. This
may cause bugs, like [1] and [2].
This is definitely not the intended usecase, so just collapse THP for
regular files in order to close the attack surface.
[shy828301@gmail.com: fix vm_file check [3]] |
| Improper initialization in firmware for some Intel(R) PROSet/Wireless Software and Intel(R) Killer(TM) Wi-Fi before version 23.40 may allow a privileged user to potentially enable information disclosure via local access. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: make cow_file_range_inline() honor locked_page on error
The btrfs buffered write path runs through __extent_writepage() which
has some tricky return value handling for writepage_delalloc().
Specifically, when that returns 1, we exit, but for other return values
we continue and end up calling btrfs_folio_end_all_writers(). If the
folio has been unlocked (note that we check the PageLocked bit at the
start of __extent_writepage()), this results in an assert panic like
this one from syzbot:
BTRFS: error (device loop0 state EAL) in free_log_tree:3267: errno=-5 IO failure
BTRFS warning (device loop0 state EAL): Skipping commit of aborted transaction.
BTRFS: error (device loop0 state EAL) in cleanup_transaction:2018: errno=-5 IO failure
assertion failed: folio_test_locked(folio), in fs/btrfs/subpage.c:871
------------[ cut here ]------------
kernel BUG at fs/btrfs/subpage.c:871!
Oops: invalid opcode: 0000 [#1] PREEMPT SMP KASAN PTI
CPU: 1 PID: 5090 Comm: syz-executor225 Not tainted
6.10.0-syzkaller-05505-gb1bc554e009e #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS
Google 06/27/2024
RIP: 0010:btrfs_folio_end_all_writers+0x55b/0x610 fs/btrfs/subpage.c:871
Code: e9 d3 fb ff ff e8 25 22 c2 fd 48 c7 c7 c0 3c 0e 8c 48 c7 c6 80 3d
0e 8c 48 c7 c2 60 3c 0e 8c b9 67 03 00 00 e8 66 47 ad 07 90 <0f> 0b e8
6e 45 b0 07 4c 89 ff be 08 00 00 00 e8 21 12 25 fe 4c 89
RSP: 0018:ffffc900033d72e0 EFLAGS: 00010246
RAX: 0000000000000045 RBX: 00fff0000000402c RCX: 663b7a08c50a0a00
RDX: 0000000000000000 RSI: 0000000080000000 RDI: 0000000000000000
RBP: ffffc900033d73b0 R08: ffffffff8176b98c R09: 1ffff9200067adfc
R10: dffffc0000000000 R11: fffff5200067adfd R12: 0000000000000001
R13: dffffc0000000000 R14: 0000000000000000 R15: ffffea0001cbee80
FS: 0000000000000000(0000) GS:ffff8880b9500000(0000)
knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f5f076012f8 CR3: 000000000e134000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
__extent_writepage fs/btrfs/extent_io.c:1597 [inline]
extent_write_cache_pages fs/btrfs/extent_io.c:2251 [inline]
btrfs_writepages+0x14d7/0x2760 fs/btrfs/extent_io.c:2373
do_writepages+0x359/0x870 mm/page-writeback.c:2656
filemap_fdatawrite_wbc+0x125/0x180 mm/filemap.c:397
__filemap_fdatawrite_range mm/filemap.c:430 [inline]
__filemap_fdatawrite mm/filemap.c:436 [inline]
filemap_flush+0xdf/0x130 mm/filemap.c:463
btrfs_release_file+0x117/0x130 fs/btrfs/file.c:1547
__fput+0x24a/0x8a0 fs/file_table.c:422
task_work_run+0x24f/0x310 kernel/task_work.c:222
exit_task_work include/linux/task_work.h:40 [inline]
do_exit+0xa2f/0x27f0 kernel/exit.c:877
do_group_exit+0x207/0x2c0 kernel/exit.c:1026
__do_sys_exit_group kernel/exit.c:1037 [inline]
__se_sys_exit_group kernel/exit.c:1035 [inline]
__x64_sys_exit_group+0x3f/0x40 kernel/exit.c:1035
x64_sys_call+0x2634/0x2640
arch/x86/include/generated/asm/syscalls_64.h:232
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f5f075b70c9
Code: Unable to access opcode bytes at
0x7f5f075b709f.
I was hitting the same issue by doing hundreds of accelerated runs of
generic/475, which also hits IO errors by design.
I instrumented that reproducer with bpftrace and found that the
undesirable folio_unlock was coming from the following callstack:
folio_unlock+5
__process_pages_contig+475
cow_file_range_inline.constprop.0+230
cow_file_range+803
btrfs_run_delalloc_range+566
writepage_delalloc+332
__extent_writepage # inlined in my stacktrace, but I added it here
extent_write_cache_pages+622
Looking at the bisected-to pa
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Add a lock when accessing the buddy trim function
When running YouTube videos and Steam games simultaneously,
the tester found a system hang / race condition issue with
the multi-display configuration setting. Adding a lock to
the buddy allocator's trim function would be the solution.
<log snip>
[ 7197.250436] general protection fault, probably for non-canonical address 0xdead000000000108
[ 7197.250447] RIP: 0010:__alloc_range+0x8b/0x340 [amddrm_buddy]
[ 7197.250470] Call Trace:
[ 7197.250472] <TASK>
[ 7197.250475] ? show_regs+0x6d/0x80
[ 7197.250481] ? die_addr+0x37/0xa0
[ 7197.250483] ? exc_general_protection+0x1db/0x480
[ 7197.250488] ? drm_suballoc_new+0x13c/0x93d [drm_suballoc_helper]
[ 7197.250493] ? asm_exc_general_protection+0x27/0x30
[ 7197.250498] ? __alloc_range+0x8b/0x340 [amddrm_buddy]
[ 7197.250501] ? __alloc_range+0x109/0x340 [amddrm_buddy]
[ 7197.250506] amddrm_buddy_block_trim+0x1b5/0x260 [amddrm_buddy]
[ 7197.250511] amdgpu_vram_mgr_new+0x4f5/0x590 [amdgpu]
[ 7197.250682] amdttm_resource_alloc+0x46/0xb0 [amdttm]
[ 7197.250689] ttm_bo_alloc_resource+0xe4/0x370 [amdttm]
[ 7197.250696] amdttm_bo_validate+0x9d/0x180 [amdttm]
[ 7197.250701] amdgpu_bo_pin+0x15a/0x2f0 [amdgpu]
[ 7197.250831] amdgpu_dm_plane_helper_prepare_fb+0xb2/0x360 [amdgpu]
[ 7197.251025] ? try_wait_for_completion+0x59/0x70
[ 7197.251030] drm_atomic_helper_prepare_planes.part.0+0x2f/0x1e0
[ 7197.251035] drm_atomic_helper_prepare_planes+0x5d/0x70
[ 7197.251037] drm_atomic_helper_commit+0x84/0x160
[ 7197.251040] drm_atomic_nonblocking_commit+0x59/0x70
[ 7197.251043] drm_mode_atomic_ioctl+0x720/0x850
[ 7197.251047] ? __pfx_drm_mode_atomic_ioctl+0x10/0x10
[ 7197.251049] drm_ioctl_kernel+0xb9/0x120
[ 7197.251053] ? srso_alias_return_thunk+0x5/0xfbef5
[ 7197.251056] drm_ioctl+0x2d4/0x550
[ 7197.251058] ? __pfx_drm_mode_atomic_ioctl+0x10/0x10
[ 7197.251063] amdgpu_drm_ioctl+0x4e/0x90 [amdgpu]
[ 7197.251186] __x64_sys_ioctl+0xa0/0xf0
[ 7197.251190] x64_sys_call+0x143b/0x25c0
[ 7197.251193] do_syscall_64+0x7f/0x180
[ 7197.251197] ? srso_alias_return_thunk+0x5/0xfbef5
[ 7197.251199] ? amdgpu_display_user_framebuffer_create+0x215/0x320 [amdgpu]
[ 7197.251329] ? drm_internal_framebuffer_create+0xb7/0x1a0
[ 7197.251332] ? srso_alias_return_thunk+0x5/0xfbef5
(cherry picked from commit 3318ba94e56b9183d0304577c74b33b6b01ce516) |
| In the Linux kernel, the following vulnerability has been resolved:
ipack: ipoctal: fix stack information leak
The tty driver name is used also after registering the driver and must
specifically not be allocated on the stack to avoid leaking information
to user space (or triggering an oops).
Drivers should not try to encode topology information in the tty device
name but this one snuck in through staging without anyone noticing and
another driver has since copied this malpractice.
Fixing the ABI is a separate issue, but this at least plugs the security
hole. |
| In the Linux kernel, the following vulnerability has been resolved:
nvme: fix reconnection fail due to reserved tag allocation
We found a issue on production environment while using NVMe over RDMA,
admin_q reconnect failed forever while remote target and network is ok.
After dig into it, we found it may caused by a ABBA deadlock due to tag
allocation. In my case, the tag was hold by a keep alive request
waiting inside admin_q, as we quiesced admin_q while reset ctrl, so the
request maked as idle and will not process before reset success. As
fabric_q shares tagset with admin_q, while reconnect remote target, we
need a tag for connect command, but the only one reserved tag was held
by keep alive command which waiting inside admin_q. As a result, we
failed to reconnect admin_q forever. In order to fix this issue, I
think we should keep two reserved tags for admin queue. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: change DMA direction while mapping reinjected packets
For fragmented packets, ath12k reassembles each fragment as a normal
packet and then reinjects it into HW ring. In this case, the DMA
direction should be DMA_TO_DEVICE, not DMA_FROM_DEVICE. Otherwise,
an invalid payload may be reinjected into the HW and
subsequently delivered to the host.
Given that arbitrary memory can be allocated to the skb buffer,
knowledge about the data contained in the reinjected buffer is lacking.
Consequently, there’s a risk of private information being leaked.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.1.1-00209-QCAHKSWPL_SILICONZ-1 |
| In the Linux kernel, the following vulnerability has been resolved:
lib: alloc_tag_module_unload must wait for pending kfree_rcu calls
Ben Greear reports following splat:
------------[ cut here ]------------
net/netfilter/nf_nat_core.c:1114 module nf_nat func:nf_nat_register_fn has 256 allocated at module unload
WARNING: CPU: 1 PID: 10421 at lib/alloc_tag.c:168 alloc_tag_module_unload+0x22b/0x3f0
Modules linked in: nf_nat(-) btrfs ufs qnx4 hfsplus hfs minix vfat msdos fat
...
Hardware name: Default string Default string/SKYBAY, BIOS 5.12 08/04/2020
RIP: 0010:alloc_tag_module_unload+0x22b/0x3f0
codetag_unload_module+0x19b/0x2a0
? codetag_load_module+0x80/0x80
nf_nat module exit calls kfree_rcu on those addresses, but the free
operation is likely still pending by the time alloc_tag checks for leaks.
Wait for outstanding kfree_rcu operations to complete before checking
resolves this warning.
Reproducer:
unshare -n iptables-nft -t nat -A PREROUTING -p tcp
grep nf_nat /proc/allocinfo # will list 4 allocations
rmmod nft_chain_nat
rmmod nf_nat # will WARN.
[akpm@linux-foundation.org: add comment] |
| In the Linux kernel, the following vulnerability has been resolved:
debugfs: fix wait/cancellation handling during remove
Ben Greear further reports deadlocks during concurrent debugfs
remove while files are being accessed, even though the code in
question now uses debugfs cancellations. Turns out that despite
all the review on the locking, we missed completely that the
logic is wrong: if the refcount hits zero we can finish (and
need not wait for the completion), but if it doesn't we have
to trigger all the cancellations. As written, we can _never_
get into the loop triggering the cancellations. Fix this, and
explain it better while at it. |
| In the Linux kernel, the following vulnerability has been resolved:
hid: cp2112: Fix duplicate workqueue initialization
Previously the cp2112 driver called INIT_DELAYED_WORK within
cp2112_gpio_irq_startup, resulting in duplicate initilizations of the
workqueue on subsequent IRQ startups following an initial request. This
resulted in a warning in set_work_data in workqueue.c, as well as a rare
NULL dereference within process_one_work in workqueue.c.
Initialize the workqueue within _probe instead. |
| In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Define the __io_aw() hook as mmiowb()
Commit fb24ea52f78e0d595852e ("drivers: Remove explicit invocations of
mmiowb()") remove all mmiowb() in drivers, but it says:
"NOTE: mmiowb() has only ever guaranteed ordering in conjunction with
spin_unlock(). However, pairing each mmiowb() removal in this patch with
the corresponding call to spin_unlock() is not at all trivial, so there
is a small chance that this change may regress any drivers incorrectly
relying on mmiowb() to order MMIO writes between CPUs using lock-free
synchronisation."
The mmio in radeon_ring_commit() is protected by a mutex rather than a
spinlock, but in the mutex fastpath it behaves similar to spinlock. We
can add mmiowb() calls in the radeon driver but the maintainer says he
doesn't like such a workaround, and radeon is not the only example of
mutex protected mmio.
So we should extend the mmiowb tracking system from spinlock to mutex,
and maybe other locking primitives. This is not easy and error prone, so
we solve it in the architectural code, by simply defining the __io_aw()
hook as mmiowb(). And we no longer need to override queued_spin_unlock()
so use the generic definition.
Without this, we get such an error when run 'glxgears' on weak ordering
architectures such as LoongArch:
radeon 0000:04:00.0: ring 0 stalled for more than 10324msec
radeon 0000:04:00.0: ring 3 stalled for more than 10240msec
radeon 0000:04:00.0: GPU lockup (current fence id 0x000000000001f412 last fence id 0x000000000001f414 on ring 3)
radeon 0000:04:00.0: GPU lockup (current fence id 0x000000000000f940 last fence id 0x000000000000f941 on ring 0)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35)
radeon 0000:04:00.0: scheduling IB failed (-35).
[drm:radeon_gem_va_ioctl [radeon]] *ERROR* Couldn't update BO_VA (-35) |
| A vulnerability was identified in Docker Desktop that allows local running Linux containers to access the Docker Engine API via the configured Docker subnet, at 192.168.65.7:2375 by default. This vulnerability occurs with or without Enhanced Container Isolation (ECI) enabled, and with or without the "Expose daemon on tcp://localhost:2375 without TLS" option enabled.
This can lead to execution of a wide range of privileged commands to the engine API, including controlling other containers, creating new ones, managing images etc. In some circumstances (e.g. Docker Desktop for Windows with WSL backend) it also allows mounting the host drive with the same privileges as the user running Docker Desktop. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix racy may inline data check in dio write
syzbot reports that the following warning from ext4_iomap_begin()
triggers as of the commit referenced below:
if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
return -ERANGE;
This occurs during a dio write, which is never expected to encounter
an inode with inline data. To enforce this behavior,
ext4_dio_write_iter() checks the current inline state of the inode
and clears the MAY_INLINE_DATA state flag to either fall back to
buffered writes, or enforce that any other writers in progress on
the inode are not allowed to create inline data.
The problem is that the check for existing inline data and the state
flag can span a lock cycle. For example, if the ilock is originally
locked shared and subsequently upgraded to exclusive, another writer
may have reacquired the lock and created inline data before the dio
write task acquires the lock and proceeds.
The commit referenced below loosens the lock requirements to allow
some forms of unaligned dio writes to occur under shared lock, but
AFAICT the inline data check was technically already racy for any
dio write that would have involved a lock cycle. Regardless, lift
clearing of the state bit to the same lock critical section that
checks for preexisting inline data on the inode to close the race. |
| In the Linux kernel, the following vulnerability has been resolved:
ALSA: scarlett2: Add missing mutex lock around get meter levels
As scarlett2_meter_ctl_get() uses meter_level_map[], the data_mutex
should be locked while accessing it. |