| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
udp: Fix memory accounting leak.
Matt Dowling reported a weird UDP memory usage issue.
Under normal operation, the UDP memory usage reported in /proc/net/sockstat
remains close to zero. However, it occasionally spiked to 524,288 pages
and never dropped. Moreover, the value doubled when the application was
terminated. Finally, it caused intermittent packet drops.
We can reproduce the issue with the script below [0]:
1. /proc/net/sockstat reports 0 pages
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 1 mem 0
2. Run the script till the report reaches 524,288
# python3 test.py & sleep 5
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 3 mem 524288 <-- (INT_MAX + 1) >> PAGE_SHIFT
3. Kill the socket and confirm the number never drops
# pkill python3 && sleep 5
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 1 mem 524288
4. (necessary since v6.0) Trigger proto_memory_pcpu_drain()
# python3 test.py & sleep 1 && pkill python3
5. The number doubles
# cat /proc/net/sockstat | grep UDP:
UDP: inuse 1 mem 1048577
The application set INT_MAX to SO_RCVBUF, which triggered an integer
overflow in udp_rmem_release().
When a socket is close()d, udp_destruct_common() purges its receive
queue and sums up skb->truesize in the queue. This total is calculated
and stored in a local unsigned integer variable.
The total size is then passed to udp_rmem_release() to adjust memory
accounting. However, because the function takes a signed integer
argument, the total size can wrap around, causing an overflow.
Then, the released amount is calculated as follows:
1) Add size to sk->sk_forward_alloc.
2) Round down sk->sk_forward_alloc to the nearest lower multiple of
PAGE_SIZE and assign it to amount.
3) Subtract amount from sk->sk_forward_alloc.
4) Pass amount >> PAGE_SHIFT to __sk_mem_reduce_allocated().
When the issue occurred, the total in udp_destruct_common() was 2147484480
(INT_MAX + 833), which was cast to -2147482816 in udp_rmem_release().
At 1) sk->sk_forward_alloc is changed from 3264 to -2147479552, and
2) sets -2147479552 to amount. 3) reverts the wraparound, so we don't
see a warning in inet_sock_destruct(). However, udp_memory_allocated
ends up doubling at 4).
Since commit 3cd3399dd7a8 ("net: implement per-cpu reserves for
memory_allocated"), memory usage no longer doubles immediately after
a socket is close()d because __sk_mem_reduce_allocated() caches the
amount in udp_memory_per_cpu_fw_alloc. However, the next time a UDP
socket receives a packet, the subtraction takes effect, causing UDP
memory usage to double.
This issue makes further memory allocation fail once the socket's
sk->sk_rmem_alloc exceeds net.ipv4.udp_rmem_min, resulting in packet
drops.
To prevent this issue, let's use unsigned int for the calculation and
call sk_forward_alloc_add() only once for the small delta.
Note that first_packet_length() also potentially has the same problem.
[0]:
from socket import *
SO_RCVBUFFORCE = 33
INT_MAX = (2 ** 31) - 1
s = socket(AF_INET, SOCK_DGRAM)
s.bind(('', 0))
s.setsockopt(SOL_SOCKET, SO_RCVBUFFORCE, INT_MAX)
c = socket(AF_INET, SOCK_DGRAM)
c.connect(s.getsockname())
data = b'a' * 100
while True:
c.send(data) |
| Starting with Firefox 142, it was possible for a compromised child process to trigger a use-after-free in the GPU or browser process using WebGPU-related IPC calls. This may have been usable to escape the child process sandbox. This vulnerability affects Firefox < 144.0.2. |
| In the Linux kernel, the following vulnerability has been resolved:
udf: fix uninit-value use in udf_get_fileshortad
Check for overflow when computing alen in udf_current_aext to mitigate
later uninit-value use in udf_get_fileshortad KMSAN bug[1].
After applying the patch reproducer did not trigger any issue[2].
[1] https://syzkaller.appspot.com/bug?extid=8901c4560b7ab5c2f9df
[2] https://syzkaller.appspot.com/x/log.txt?x=10242227980000 |
| In the Linux kernel, the following vulnerability has been resolved:
media: pci: ivtv: Add check for DMA map result
In case DMA fails, 'dma->SG_length' is 0. This value is later used to
access 'dma->SGarray[dma->SG_length - 1]', which will cause out of
bounds access.
Add check to return early on invalid value. Adjust warnings accordingly.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: rcar: Demote WARN() to dev_warn_ratelimited() in rcar_pcie_wakeup()
Avoid large backtrace, it is sufficient to warn the user that there has
been a link problem. Either the link has failed and the system is in need
of maintenance, or the link continues to work and user has been informed.
The message from the warning can be looked up in the sources.
This makes an actual link issue less verbose.
First of all, this controller has a limitation in that the controller
driver has to assist the hardware with transition to L1 link state by
writing L1IATN to PMCTRL register, the L1 and L0 link state switching
is not fully automatic on this controller.
In case of an ASMedia ASM1062 PCIe SATA controller which does not support
ASPM, on entry to suspend or during platform pm_test, the SATA controller
enters D3hot state and the link enters L1 state. If the SATA controller
wakes up before rcar_pcie_wakeup() was called and returns to D0, the link
returns to L0 before the controller driver even started its transition to
L1 link state. At this point, the SATA controller did send an PM_ENTER_L1
DLLP to the PCIe controller and the PCIe controller received it, and the
PCIe controller did set PMSR PMEL1RX bit.
Once rcar_pcie_wakeup() is called, if the link is already back in L0 state
and PMEL1RX bit is set, the controller driver has no way to determine if
it should perform the link transition to L1 state, or treat the link as if
it is in L0 state. Currently the driver attempts to perform the transition
to L1 link state unconditionally, which in this specific case fails with a
PMSR L1FAEG poll timeout, however the link still works as it is already
back in L0 state.
Reduce this warning verbosity. In case the link is really broken, the
rcar_pcie_config_access() would fail, otherwise it will succeed and any
system with this controller and ASM1062 can suspend without generating
a backtrace. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/slab: make __free(kfree) accept error pointers
Currently, if an automatically freed allocation is an error pointer that
will lead to a crash. An example of this is in wm831x_gpio_dbg_show().
171 char *label __free(kfree) = gpiochip_dup_line_label(chip, i);
172 if (IS_ERR(label)) {
173 dev_err(wm831x->dev, "Failed to duplicate label\n");
174 continue;
175 }
The auto clean up function should check for error pointers as well,
otherwise we're going to keep hitting issues like this. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: ses: Fix possible addl_desc_ptr out-of-bounds accesses
Sanitize possible addl_desc_ptr out-of-bounds accesses in
ses_enclosure_data_process(). |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix potential null dereference
The adev->dm.dc pointer can be NULL and dereferenced in amdgpu_dm_fini()
without checking.
Add a NULL pointer check before calling dc_dmub_srv_destroy().
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| AhnLab EPP 1.0.15 is vulnerable to SQL Injection via the "preview parameter." |
| In the Linux kernel, the following vulnerability has been resolved:
fsdax: Fix infinite loop in dax_iomap_rw()
I got an infinite loop and a WARNING report when executing a tail command
in virtiofs.
WARNING: CPU: 10 PID: 964 at fs/iomap/iter.c:34 iomap_iter+0x3a2/0x3d0
Modules linked in:
CPU: 10 PID: 964 Comm: tail Not tainted 5.19.0-rc7
Call Trace:
<TASK>
dax_iomap_rw+0xea/0x620
? __this_cpu_preempt_check+0x13/0x20
fuse_dax_read_iter+0x47/0x80
fuse_file_read_iter+0xae/0xd0
new_sync_read+0xfe/0x180
? 0xffffffff81000000
vfs_read+0x14d/0x1a0
ksys_read+0x6d/0xf0
__x64_sys_read+0x1a/0x20
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The tail command will call read() with a count of 0. In this case,
iomap_iter() will report this WARNING, and always return 1 which casuing
the infinite loop in dax_iomap_rw().
Fixing by checking count whether is 0 in dax_iomap_rw(). |
| Trend Micro OfficeScan versions 11.0 and XG (12.0) could be exploited by an attacker utilizing a directory traversal vulnerability to extract files from an arbitrary zip file to a specific folder on the OfficeScan server, which could potentially lead to remote code execution (RCE). The remote process execution is bound to a web service account, which depending on the web platform used may have restricted permissions. An attempted attack requires user authentication. |
| A flaw was found in the FreeRDP used by Anaconda's remote install feature, where a crafted RDP packet could trigger a segmentation fault. This issue causes the service to crash and remain defunct, resulting in a denial of service. It occurs pre-boot and is likely due to a NULL pointer dereference. Rebooting is required to recover the system. |
| tpm2-tss is an open source software implementation of the Trusted Computing Group (TCG) Trusted Platform Module (TPM) 2 Software Stack (TSS2). In affected versions `Tss2_RC_SetHandler` and `Tss2_RC_Decode` both index into `layer_handler` with an 8 bit layer number, but the array only has `TPM2_ERROR_TSS2_RC_LAYER_COUNT` entries, so trying to add a handler for higher-numbered layers or decode a response code with such a layer number reads/writes past the end of the buffer. This Buffer overrun, could result in arbitrary code execution. An example attack would be a MiTM bus attack that returns 0xFFFFFFFF for the RC. Given the common use case of TPM modules an attacker must have local access to the target machine with local system privileges which allows access to the TPM system. Usually TPM access requires administrative privilege. |
| The 10Web Photo Gallery plugin through 1.5.68 for WordPress allows XSS via album_gallery_id_0, bwg_album_search_0, and type_0 for bwg_frontend_data. NOTE: other parameters are covered by CVE-2021-24291, CVE-2021-25041, and CVE-2021-46889. NOTE: VMware information, previously connected to this CVE ID because of a typo, is at CVE-2022-31693. |
| A flaw was found in the libssh library in versions less than 0.11.2. An out-of-bounds read can be triggered in the sftp_handle function due to an incorrect comparison check that permits the function to access memory beyond the valid handle list and to return an invalid pointer, which is used in further processing. This vulnerability allows an authenticated remote attacker to potentially read unintended memory regions, exposing sensitive information or affect service behavior. |
| The Keras.Model.load_model method, including when executed with the intended security mitigation safe_mode=True, is vulnerable to arbitrary local file loading and Server-Side Request Forgery (SSRF).
This vulnerability stems from the way the StringLookup layer is handled during model loading from a specially crafted .keras archive. The constructor for the StringLookup layer accepts a vocabulary argument that can specify a local file path or a remote file path.
* Arbitrary Local File Read: An attacker can create a malicious .keras file that embeds a local path in the StringLookup layer's configuration. When the model is loaded, Keras will attempt to read the content of the specified local file and incorporate it into the model state (e.g., retrievable via get_vocabulary()), allowing an attacker to read arbitrary local files on the hosting system.
* Server-Side Request Forgery (SSRF): Keras utilizes tf.io.gfile for file operations. Since tf.io.gfile supports remote filesystem handlers (such as GCS and HDFS) and HTTP/HTTPS protocols, the same mechanism can be leveraged to fetch content from arbitrary network endpoints on the server's behalf, resulting in an SSRF condition.
The security issue is that the feature allowing external path loading was not properly restricted by the safe_mode=True flag, which was intended to prevent such unintended data access. |
| Due to improper validation, SAP BusinessObject Business Intelligence Launch Pad allows an authenticated attacker to access operating system information using crafted document. On successful exploitation there could be a considerable impact on confidentiality of the application. |
| Cross-site Scripting (XSS) - Stored in mindsdb/mindsdb |
| The Thumbnail Slider With Lightbox plugin for WordPress is vulnerable to SQL Injection via the 'id' parameter in all versions up to, and including, 1.0.4 due to insufficient escaping on the user supplied parameter and lack of sufficient preparation on the existing SQL query. This makes it possible for authenticated attackers, with Administrator-level access and above, to append additional SQL queries into already existing queries that can be used to extract sensitive information from the database. |
| HCL Connections contains a user enumeration vulnerability. Certain actions could allow an attacker to determine if the user is valid or not, leading to a possible brute force attack.
|