| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An out-of-bounds access issue was addressed with improved bounds checking. This issue is fixed in iOS 17.6 and iPadOS 17.6, watchOS 10.6, tvOS 17.6, visionOS 1.3, macOS Sonoma 14.6. Processing a maliciously crafted file may lead to unexpected app termination. |
| In the Linux kernel, the following vulnerability has been resolved:
media: stk1160: fix bounds checking in stk1160_copy_video()
The subtract in this condition is reversed. The ->length is the length
of the buffer. The ->bytesused is how many bytes we have copied thus
far. When the condition is reversed that means the result of the
subtraction is always negative but since it's unsigned then the result
is a very high positive value. That means the overflow check is never
true.
Additionally, the ->bytesused doesn't actually work for this purpose
because we're not writing to "buf->mem + buf->bytesused". Instead, the
math to calculate the destination where we are writing is a bit
involved. You calculate the number of full lines already written,
multiply by two, skip a line if necessary so that we start on an odd
numbered line, and add the offset into the line.
To fix this buffer overflow, just take the actual destination where we
are writing, if the offset is already out of bounds print an error and
return. Otherwise, write up to buf->length bytes. |
| In the Linux kernel, the following vulnerability has been resolved:
speakup: Fix sizeof() vs ARRAY_SIZE() bug
The "buf" pointer is an array of u16 values. This code should be
using ARRAY_SIZE() (which is 256) instead of sizeof() (which is 512),
otherwise it can the still got out of bounds. |
| In the Linux kernel, the following vulnerability has been resolved:
ecryptfs: Fix buffer size for tag 66 packet
The 'TAG 66 Packet Format' description is missing the cipher code and
checksum fields that are packed into the message packet. As a result,
the buffer allocated for the packet is 3 bytes too small and
write_tag_66_packet() will write up to 3 bytes past the end of the
buffer.
Fix this by increasing the size of the allocation so the whole packet
will always fit in the buffer.
This fixes the below kasan slab-out-of-bounds bug:
BUG: KASAN: slab-out-of-bounds in ecryptfs_generate_key_packet_set+0x7d6/0xde0
Write of size 1 at addr ffff88800afbb2a5 by task touch/181
CPU: 0 PID: 181 Comm: touch Not tainted 6.6.13-gnu #1 4c9534092be820851bb687b82d1f92a426598dc6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2/GNU Guix 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x4c/0x70
print_report+0xc5/0x610
? ecryptfs_generate_key_packet_set+0x7d6/0xde0
? kasan_complete_mode_report_info+0x44/0x210
? ecryptfs_generate_key_packet_set+0x7d6/0xde0
kasan_report+0xc2/0x110
? ecryptfs_generate_key_packet_set+0x7d6/0xde0
__asan_store1+0x62/0x80
ecryptfs_generate_key_packet_set+0x7d6/0xde0
? __pfx_ecryptfs_generate_key_packet_set+0x10/0x10
? __alloc_pages+0x2e2/0x540
? __pfx_ovl_open+0x10/0x10 [overlay 30837f11141636a8e1793533a02e6e2e885dad1d]
? dentry_open+0x8f/0xd0
ecryptfs_write_metadata+0x30a/0x550
? __pfx_ecryptfs_write_metadata+0x10/0x10
? ecryptfs_get_lower_file+0x6b/0x190
ecryptfs_initialize_file+0x77/0x150
ecryptfs_create+0x1c2/0x2f0
path_openat+0x17cf/0x1ba0
? __pfx_path_openat+0x10/0x10
do_filp_open+0x15e/0x290
? __pfx_do_filp_open+0x10/0x10
? __kasan_check_write+0x18/0x30
? _raw_spin_lock+0x86/0xf0
? __pfx__raw_spin_lock+0x10/0x10
? __kasan_check_write+0x18/0x30
? alloc_fd+0xf4/0x330
do_sys_openat2+0x122/0x160
? __pfx_do_sys_openat2+0x10/0x10
__x64_sys_openat+0xef/0x170
? __pfx___x64_sys_openat+0x10/0x10
do_syscall_64+0x60/0xd0
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
RIP: 0033:0x7f00a703fd67
Code: 25 00 00 41 00 3d 00 00 41 00 74 37 64 8b 04 25 18 00 00 00 85 c0 75 5b 44 89 e2 48 89 ee bf 9c ff ff ff b8 01 01 00 00 0f 05 <48> 3d 00 f0 ff ff 0f 87 85 00 00 00 48 83 c4 68 5d 41 5c c3 0f 1f
RSP: 002b:00007ffc088e30b0 EFLAGS: 00000246 ORIG_RAX: 0000000000000101
RAX: ffffffffffffffda RBX: 00007ffc088e3368 RCX: 00007f00a703fd67
RDX: 0000000000000941 RSI: 00007ffc088e48d7 RDI: 00000000ffffff9c
RBP: 00007ffc088e48d7 R08: 0000000000000001 R09: 0000000000000000
R10: 00000000000001b6 R11: 0000000000000246 R12: 0000000000000941
R13: 0000000000000000 R14: 00007ffc088e48d7 R15: 00007f00a7180040
</TASK>
Allocated by task 181:
kasan_save_stack+0x2f/0x60
kasan_set_track+0x29/0x40
kasan_save_alloc_info+0x25/0x40
__kasan_kmalloc+0xc5/0xd0
__kmalloc+0x66/0x160
ecryptfs_generate_key_packet_set+0x6d2/0xde0
ecryptfs_write_metadata+0x30a/0x550
ecryptfs_initialize_file+0x77/0x150
ecryptfs_create+0x1c2/0x2f0
path_openat+0x17cf/0x1ba0
do_filp_open+0x15e/0x290
do_sys_openat2+0x122/0x160
__x64_sys_openat+0xef/0x170
do_syscall_64+0x60/0xd0
entry_SYSCALL_64_after_hwframe+0x6e/0xd8 |
| In the Linux kernel, the following vulnerability has been resolved:
tty: n_gsm: fix possible out-of-bounds in gsm0_receive()
Assuming the following:
- side A configures the n_gsm in basic option mode
- side B sends the header of a basic option mode frame with data length 1
- side A switches to advanced option mode
- side B sends 2 data bytes which exceeds gsm->len
Reason: gsm->len is not used in advanced option mode.
- side A switches to basic option mode
- side B keeps sending until gsm0_receive() writes past gsm->buf
Reason: Neither gsm->state nor gsm->len have been reset after
reconfiguration.
Fix this by changing gsm->count to gsm->len comparison from equal to less
than. Also add upper limit checks against the constant MAX_MRU in
gsm0_receive() and gsm1_receive() to harden against memory corruption of
gsm->len and gsm->mru.
All other checks remain as we still need to limit the data according to the
user configuration and actual payload size. |
| In the Linux kernel, the following vulnerability has been resolved:
xsk: validate user input for XDP_{UMEM|COMPLETION}_FILL_RING
syzbot reported an illegal copy in xsk_setsockopt() [1]
Make sure to validate setsockopt() @optlen parameter.
[1]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
BUG: KASAN: slab-out-of-bounds in copy_from_sockptr include/linux/sockptr.h:55 [inline]
BUG: KASAN: slab-out-of-bounds in xsk_setsockopt+0x909/0xa40 net/xdp/xsk.c:1420
Read of size 4 at addr ffff888028c6cde3 by task syz-executor.0/7549
CPU: 0 PID: 7549 Comm: syz-executor.0 Not tainted 6.8.0-syzkaller-08951-gfe46a7dd189e #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/27/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:114
print_address_description mm/kasan/report.c:377 [inline]
print_report+0x169/0x550 mm/kasan/report.c:488
kasan_report+0x143/0x180 mm/kasan/report.c:601
copy_from_sockptr_offset include/linux/sockptr.h:49 [inline]
copy_from_sockptr include/linux/sockptr.h:55 [inline]
xsk_setsockopt+0x909/0xa40 net/xdp/xsk.c:1420
do_sock_setsockopt+0x3af/0x720 net/socket.c:2311
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6d/0x75
RIP: 0033:0x7fb40587de69
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 e1 20 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007fb40665a0c8 EFLAGS: 00000246 ORIG_RAX: 0000000000000036
RAX: ffffffffffffffda RBX: 00007fb4059abf80 RCX: 00007fb40587de69
RDX: 0000000000000005 RSI: 000000000000011b RDI: 0000000000000006
RBP: 00007fb4058ca47a R08: 0000000000000002 R09: 0000000000000000
R10: 0000000020001980 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000000000b R14: 00007fb4059abf80 R15: 00007fff57ee4d08
</TASK>
Allocated by task 7549:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:370 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:387
kasan_kmalloc include/linux/kasan.h:211 [inline]
__do_kmalloc_node mm/slub.c:3966 [inline]
__kmalloc+0x233/0x4a0 mm/slub.c:3979
kmalloc include/linux/slab.h:632 [inline]
__cgroup_bpf_run_filter_setsockopt+0xd2f/0x1040 kernel/bpf/cgroup.c:1869
do_sock_setsockopt+0x6b4/0x720 net/socket.c:2293
__sys_setsockopt+0x1ae/0x250 net/socket.c:2334
__do_sys_setsockopt net/socket.c:2343 [inline]
__se_sys_setsockopt net/socket.c:2340 [inline]
__x64_sys_setsockopt+0xb5/0xd0 net/socket.c:2340
do_syscall_64+0xfb/0x240
entry_SYSCALL_64_after_hwframe+0x6d/0x75
The buggy address belongs to the object at ffff888028c6cde0
which belongs to the cache kmalloc-8 of size 8
The buggy address is located 1 bytes to the right of
allocated 2-byte region [ffff888028c6cde0, ffff888028c6cde2)
The buggy address belongs to the physical page:
page:ffffea0000a31b00 refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888028c6c9c0 pfn:0x28c6c
anon flags: 0xfff00000000800(slab|node=0|zone=1|lastcpupid=0x7ff)
page_type: 0xffffffff()
raw: 00fff00000000800 ffff888014c41280 0000000000000000 dead000000000001
raw: ffff888028c6c9c0 0000000080800057 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
page_owner tracks the page as allocated
page last allocated via order 0, migratetype Unmovable, gfp_mask 0x112cc0(GFP_USER|__GFP_NOWARN|__GFP_NORETRY), pid 6648, tgid 6644 (syz-executor.0), ts 133906047828, free_ts 133859922223
set_page_owner include/linux/page_owner.h:31 [inline]
post_alloc_hook+0x1ea/0x210 mm/page_alloc.c:1533
prep_new_page mm/page_alloc.c:
---truncated--- |
| An out-of-bounds write issue was addressed with improved input validation. This issue is fixed in iOS 16.7.9 and iPadOS 16.7.9, macOS Ventura 13.6.8, macOS Monterey 12.7.6, iOS 17.6 and iPadOS 17.6, macOS Sonoma 14.6. Processing a maliciously crafted video file may lead to unexpected app termination. |
| A heap-based buffer overflow vulnerability exists in the LookupTable::SetLUT functionality of Mathieu Malaterre Grassroot DICOM 3.0.23. A specially crafted malformed file can lead to memory corruption. An attacker can provide a malicious file to trigger this vulnerability. |
| An out-of-bounds write vulnerability exists in the JPEG2000Codec::DecodeByStreamsCommon functionality of Mathieu Malaterre Grassroot DICOM 3.0.23. A specially crafted DICOM file can lead to a heap buffer overflow. An attacker can provide a malicious file to trigger this vulnerability. |
| A heap-based buffer overflow vulnerability exists in the configuration file mib_init_value_array functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted .dat file can lead to arbitrary code execution. An attacker can upload a malicious file to trigger this vulnerability. |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: nftables: exthdr: fix 4-byte stack OOB write
If priv->len is a multiple of 4, then dst[len / 4] can write past
the destination array which leads to stack corruption.
This construct is necessary to clean the remainder of the register
in case ->len is NOT a multiple of the register size, so make it
conditional just like nft_payload.c does.
The bug was added in 4.1 cycle and then copied/inherited when
tcp/sctp and ip option support was added.
Bug reported by Zero Day Initiative project (ZDI-CAN-21950,
ZDI-CAN-21951, ZDI-CAN-21961). |
| A stack-based buffer overflow vulnerability exists in the boa getInfo functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can send a series of HTTP requests to trigger this vulnerability. |
| Two stack-based buffer overflow vulnerabilities exist in the boa formIpQoS functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can send a series of HTTP requests to trigger these vulnerabilities.This stack-based buffer overflow is related to the `entry_name` request's parameter. |
| Two stack-based buffer overflow vulnerabilities exist in the boa formIpQoS functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can send a series of HTTP requests to trigger these vulnerabilities.This stack-based buffer overflow is related to the `comment` request's parameter. |
| Two stack-based buffer overflow vulnerabilities exist in the boa set_RadvdInterfaceParam functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of network requests can lead to remote code execution. An attacker can send a sequence of requests to trigger these vulnerabilities.This stack-based buffer overflow is related to the `AdvDefaultPreference` request's parameter. |
| Two stack-based buffer overflow vulnerabilities exist in the boa set_RadvdInterfaceParam functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of network requests can lead to remote code execution. An attacker can send a sequence of requests to trigger these vulnerabilities.This stack-based buffer overflow is related to the `interfacename` request's parameter. |
| A stack-based buffer overflow vulnerability exists in the boa formWsc functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of HTTP requests can lead to remote code execution. An attacker can send a series of HTTP requests to trigger this vulnerability. |
| A stack-based buffer overflow vulnerability exists in the boa rollback_control_code functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of network requests can lead to arbitrary code execution. An attacker can send a sequence of requests to trigger this vulnerability. |
| A stack-based buffer overflow vulnerability exists in the boa formFilter functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of HTTP requests can lead to arbitrary code execution. An attacker can send a sequence of requests to trigger this vulnerability. |
| A stack-based buffer overflow vulnerability exists in the boa formDnsv6 functionality of Realtek rtl819x Jungle SDK v3.4.11. A specially crafted series of network requests can lead to arbitrary code execution. An attacker can send a sequence of requests to trigger this vulnerability. |