CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
hv_netvsc: Fix race condition between netvsc_probe and netvsc_remove
In commit ac5047671758 ("hv_netvsc: Disable NAPI before closing the
VMBus channel"), napi_disable was getting called for all channels,
including all subchannels without confirming if they are enabled or not.
This caused hv_netvsc getting hung at napi_disable, when netvsc_probe()
has finished running but nvdev->subchan_work has not started yet.
netvsc_subchan_work() -> rndis_set_subchannel() has not created the
sub-channels and because of that netvsc_sc_open() is not running.
netvsc_remove() calls cancel_work_sync(&nvdev->subchan_work), for which
netvsc_subchan_work did not run.
netif_napi_add() sets the bit NAPI_STATE_SCHED because it ensures NAPI
cannot be scheduled. Then netvsc_sc_open() -> napi_enable will clear the
NAPIF_STATE_SCHED bit, so it can be scheduled. napi_disable() does the
opposite.
Now during netvsc_device_remove(), when napi_disable is called for those
subchannels, napi_disable gets stuck on infinite msleep.
This fix addresses this problem by ensuring that napi_disable() is not
getting called for non-enabled NAPI struct.
But netif_napi_del() is still necessary for these non-enabled NAPI struct
for cleanup purpose.
Call trace:
[ 654.559417] task:modprobe state:D stack: 0 pid: 2321 ppid: 1091 flags:0x00004002
[ 654.568030] Call Trace:
[ 654.571221] <TASK>
[ 654.573790] __schedule+0x2d6/0x960
[ 654.577733] schedule+0x69/0xf0
[ 654.581214] schedule_timeout+0x87/0x140
[ 654.585463] ? __bpf_trace_tick_stop+0x20/0x20
[ 654.590291] msleep+0x2d/0x40
[ 654.593625] napi_disable+0x2b/0x80
[ 654.597437] netvsc_device_remove+0x8a/0x1f0 [hv_netvsc]
[ 654.603935] rndis_filter_device_remove+0x194/0x1c0 [hv_netvsc]
[ 654.611101] ? do_wait_intr+0xb0/0xb0
[ 654.615753] netvsc_remove+0x7c/0x120 [hv_netvsc]
[ 654.621675] vmbus_remove+0x27/0x40 [hv_vmbus] |
In the Linux kernel, the following vulnerability has been resolved:
fs/proc: do_task_stat: use sig->stats_lock to gather the threads/children stats
lock_task_sighand() can trigger a hard lockup. If NR_CPUS threads call
do_task_stat() at the same time and the process has NR_THREADS, it will
spin with irqs disabled O(NR_CPUS * NR_THREADS) time.
Change do_task_stat() to use sig->stats_lock to gather the statistics
outside of ->siglock protected section, in the likely case this code will
run lockless. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix use-after-free bug
The bug can be triggered by sending a single amdgpu_gem_userptr_ioctl
to the AMDGPU DRM driver on any ASICs with an invalid address and size.
The bug was reported by Joonkyo Jung <joonkyoj@yonsei.ac.kr>.
For example the following code:
static void Syzkaller1(int fd)
{
struct drm_amdgpu_gem_userptr arg;
int ret;
arg.addr = 0xffffffffffff0000;
arg.size = 0x80000000; /*2 Gb*/
arg.flags = 0x7;
ret = drmIoctl(fd, 0xc1186451/*amdgpu_gem_userptr_ioctl*/, &arg);
}
Due to the address and size are not valid there is a failure in
amdgpu_hmm_register->mmu_interval_notifier_insert->__mmu_interval_notifier_insert->
check_shl_overflow, but we even the amdgpu_hmm_register failure we still call
amdgpu_hmm_unregister into amdgpu_gem_object_free which causes access to a bad address.
The following stack is below when the issue is reproduced when Kazan is enabled:
[ +0.000014] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020
[ +0.000009] RIP: 0010:mmu_interval_notifier_remove+0x327/0x340
[ +0.000017] Code: ff ff 49 89 44 24 08 48 b8 00 01 00 00 00 00 ad de 4c 89 f7 49 89 47 40 48 83 c0 22 49 89 47 48 e8 ce d1 2d 01 e9 32 ff ff ff <0f> 0b e9 16 ff ff ff 4c 89 ef e8 fa 14 b3 ff e9 36 ff ff ff e8 80
[ +0.000014] RSP: 0018:ffffc90002657988 EFLAGS: 00010246
[ +0.000013] RAX: 0000000000000000 RBX: 1ffff920004caf35 RCX: ffffffff8160565b
[ +0.000011] RDX: dffffc0000000000 RSI: 0000000000000004 RDI: ffff8881a9f78260
[ +0.000010] RBP: ffffc90002657a70 R08: 0000000000000001 R09: fffff520004caf25
[ +0.000010] R10: 0000000000000003 R11: ffffffff8161d1d6 R12: ffff88810e988c00
[ +0.000010] R13: ffff888126fb5a00 R14: ffff88810e988c0c R15: ffff8881a9f78260
[ +0.000011] FS: 00007ff9ec848540(0000) GS:ffff8883cc880000(0000) knlGS:0000000000000000
[ +0.000012] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ +0.000010] CR2: 000055b3f7e14328 CR3: 00000001b5770000 CR4: 0000000000350ef0
[ +0.000010] Call Trace:
[ +0.000006] <TASK>
[ +0.000007] ? show_regs+0x6a/0x80
[ +0.000018] ? __warn+0xa5/0x1b0
[ +0.000019] ? mmu_interval_notifier_remove+0x327/0x340
[ +0.000018] ? report_bug+0x24a/0x290
[ +0.000022] ? handle_bug+0x46/0x90
[ +0.000015] ? exc_invalid_op+0x19/0x50
[ +0.000016] ? asm_exc_invalid_op+0x1b/0x20
[ +0.000017] ? kasan_save_stack+0x26/0x50
[ +0.000017] ? mmu_interval_notifier_remove+0x23b/0x340
[ +0.000019] ? mmu_interval_notifier_remove+0x327/0x340
[ +0.000019] ? mmu_interval_notifier_remove+0x23b/0x340
[ +0.000020] ? __pfx_mmu_interval_notifier_remove+0x10/0x10
[ +0.000017] ? kasan_save_alloc_info+0x1e/0x30
[ +0.000018] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? __kasan_kmalloc+0xb1/0xc0
[ +0.000018] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? __kasan_check_read+0x11/0x20
[ +0.000020] amdgpu_hmm_unregister+0x34/0x50 [amdgpu]
[ +0.004695] amdgpu_gem_object_free+0x66/0xa0 [amdgpu]
[ +0.004534] ? __pfx_amdgpu_gem_object_free+0x10/0x10 [amdgpu]
[ +0.004291] ? do_syscall_64+0x5f/0xe0
[ +0.000023] ? srso_return_thunk+0x5/0x5f
[ +0.000017] drm_gem_object_free+0x3b/0x50 [drm]
[ +0.000489] amdgpu_gem_userptr_ioctl+0x306/0x500 [amdgpu]
[ +0.004295] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu]
[ +0.004270] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? __this_cpu_preempt_check+0x13/0x20
[ +0.000015] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? sysvec_apic_timer_interrupt+0x57/0xc0
[ +0.000020] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? asm_sysvec_apic_timer_interrupt+0x1b/0x20
[ +0.000022] ? drm_ioctl_kernel+0x17b/0x1f0 [drm]
[ +0.000496] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu]
[ +0.004272] ? drm_ioctl_kernel+0x190/0x1f0 [drm]
[ +0.000492] drm_ioctl_kernel+0x140/0x1f0 [drm]
[ +0.000497] ? __pfx_amdgpu_gem_userptr_ioctl+0x10/0x10 [amdgpu]
[ +0.004297] ? __pfx_drm_ioctl_kernel+0x10/0x10 [d
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_tables: disallow anonymous set with timeout flag
Anonymous sets are never used with timeout from userspace, reject this.
Exception to this rule is NFT_SET_EVAL to ensure legacy meters still work. |
In the Linux kernel, the following vulnerability has been resolved:
tcp: add sanity checks to rx zerocopy
TCP rx zerocopy intent is to map pages initially allocated
from NIC drivers, not pages owned by a fs.
This patch adds to can_map_frag() these additional checks:
- Page must not be a compound one.
- page->mapping must be NULL.
This fixes the panic reported by ZhangPeng.
syzbot was able to loopback packets built with sendfile(),
mapping pages owned by an ext4 file to TCP rx zerocopy.
r3 = socket$inet_tcp(0x2, 0x1, 0x0)
mmap(&(0x7f0000ff9000/0x4000)=nil, 0x4000, 0x0, 0x12, r3, 0x0)
r4 = socket$inet_tcp(0x2, 0x1, 0x0)
bind$inet(r4, &(0x7f0000000000)={0x2, 0x4e24, @multicast1}, 0x10)
connect$inet(r4, &(0x7f00000006c0)={0x2, 0x4e24, @empty}, 0x10)
r5 = openat$dir(0xffffffffffffff9c, &(0x7f00000000c0)='./file0\x00',
0x181e42, 0x0)
fallocate(r5, 0x0, 0x0, 0x85b8)
sendfile(r4, r5, 0x0, 0x8ba0)
getsockopt$inet_tcp_TCP_ZEROCOPY_RECEIVE(r4, 0x6, 0x23,
&(0x7f00000001c0)={&(0x7f0000ffb000/0x3000)=nil, 0x3000, 0x0, 0x0, 0x0,
0x0, 0x0, 0x0, 0x0}, &(0x7f0000000440)=0x40)
r6 = openat$dir(0xffffffffffffff9c, &(0x7f00000000c0)='./file0\x00',
0x181e42, 0x0) |
In the Linux kernel, the following vulnerability has been resolved:
sched/membarrier: reduce the ability to hammer on sys_membarrier
On some systems, sys_membarrier can be very expensive, causing overall
slowdowns for everything. So put a lock on the path in order to
serialize the accesses to prevent the ability for this to be called at
too high of a frequency and saturate the machine. |
In the Linux kernel, the following vulnerability has been resolved:
KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache
There is a potential UAF scenario in the case of an LPI translation
cache hit racing with an operation that invalidates the cache, such
as a DISCARD ITS command. The root of the problem is that
vgic_its_check_cache() does not elevate the refcount on the vgic_irq
before dropping the lock that serializes refcount changes.
Have vgic_its_check_cache() raise the refcount on the returned vgic_irq
and add the corresponding decrement after queueing the interrupt. |
In the Linux kernel, the following vulnerability has been resolved:
mlxsw: spectrum_acl_tcam: Fix stack corruption
When tc filters are first added to a net device, the corresponding local
port gets bound to an ACL group in the device. The group contains a list
of ACLs. In turn, each ACL points to a different TCAM region where the
filters are stored. During forwarding, the ACLs are sequentially
evaluated until a match is found.
One reason to place filters in different regions is when they are added
with decreasing priorities and in an alternating order so that two
consecutive filters can never fit in the same region because of their
key usage.
In Spectrum-2 and newer ASICs the firmware started to report that the
maximum number of ACLs in a group is more than 16, but the layout of the
register that configures ACL groups (PAGT) was not updated to account
for that. It is therefore possible to hit stack corruption [1] in the
rare case where more than 16 ACLs in a group are required.
Fix by limiting the maximum ACL group size to the minimum between what
the firmware reports and the maximum ACLs that fit in the PAGT register.
Add a test case to make sure the machine does not crash when this
condition is hit.
[1]
Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: mlxsw_sp_acl_tcam_group_update+0x116/0x120
[...]
dump_stack_lvl+0x36/0x50
panic+0x305/0x330
__stack_chk_fail+0x15/0x20
mlxsw_sp_acl_tcam_group_update+0x116/0x120
mlxsw_sp_acl_tcam_group_region_attach+0x69/0x110
mlxsw_sp_acl_tcam_vchunk_get+0x492/0xa20
mlxsw_sp_acl_tcam_ventry_add+0x25/0xe0
mlxsw_sp_acl_rule_add+0x47/0x240
mlxsw_sp_flower_replace+0x1a9/0x1d0
tc_setup_cb_add+0xdc/0x1c0
fl_hw_replace_filter+0x146/0x1f0
fl_change+0xc17/0x1360
tc_new_tfilter+0x472/0xb90
rtnetlink_rcv_msg+0x313/0x3b0
netlink_rcv_skb+0x58/0x100
netlink_unicast+0x244/0x390
netlink_sendmsg+0x1e4/0x440
____sys_sendmsg+0x164/0x260
___sys_sendmsg+0x9a/0xe0
__sys_sendmsg+0x7a/0xc0
do_syscall_64+0x40/0xe0
entry_SYSCALL_64_after_hwframe+0x63/0x6b |
In the Linux kernel, the following vulnerability has been resolved:
tls: fix race between tx work scheduling and socket close
Similarly to previous commit, the submitting thread (recvmsg/sendmsg)
may exit as soon as the async crypto handler calls complete().
Reorder scheduling the work before calling complete().
This seems more logical in the first place, as it's
the inverse order of what the submitting thread will do. |
In the Linux kernel, the following vulnerability has been resolved:
net: tls: handle backlogging of crypto requests
Since we're setting the CRYPTO_TFM_REQ_MAY_BACKLOG flag on our
requests to the crypto API, crypto_aead_{encrypt,decrypt} can return
-EBUSY instead of -EINPROGRESS in valid situations. For example, when
the cryptd queue for AESNI is full (easy to trigger with an
artificially low cryptd.cryptd_max_cpu_qlen), requests will be enqueued
to the backlog but still processed. In that case, the async callback
will also be called twice: first with err == -EINPROGRESS, which it
seems we can just ignore, then with err == 0.
Compared to Sabrina's original patch this version uses the new
tls_*crypt_async_wait() helpers and converts the EBUSY to
EINPROGRESS to avoid having to modify all the error handling
paths. The handling is identical. |
In the Linux kernel, the following vulnerability has been resolved:
um: Fix out-of-bounds read in LDT setup
syscall_stub_data() expects the data_count parameter to be the number of
longs, not bytes.
==================================================================
BUG: KASAN: stack-out-of-bounds in syscall_stub_data+0x70/0xe0
Read of size 128 at addr 000000006411f6f0 by task swapper/1
CPU: 0 PID: 1 Comm: swapper Not tainted 5.18.0+ #18
Call Trace:
show_stack.cold+0x166/0x2a7
__dump_stack+0x3a/0x43
dump_stack_lvl+0x1f/0x27
print_report.cold+0xdb/0xf81
kasan_report+0x119/0x1f0
kasan_check_range+0x3a3/0x440
memcpy+0x52/0x140
syscall_stub_data+0x70/0xe0
write_ldt_entry+0xac/0x190
init_new_ldt+0x515/0x960
init_new_context+0x2c4/0x4d0
mm_init.constprop.0+0x5ed/0x760
mm_alloc+0x118/0x170
0x60033f48
do_one_initcall+0x1d7/0x860
0x60003e7b
kernel_init+0x6e/0x3d4
new_thread_handler+0x1e7/0x2c0
The buggy address belongs to stack of task swapper/1
and is located at offset 64 in frame:
init_new_ldt+0x0/0x960
This frame has 2 objects:
[32, 40) 'addr'
[64, 80) 'desc'
================================================================== |
In the Linux kernel, the following vulnerability has been resolved:
mt76: fix use-after-free by removing a non-RCU wcid pointer
Fixes an issue caught by KASAN about use-after-free in mt76_txq_schedule
by protecting mtxq->wcid with rcu_lock between mt76_txq_schedule and
sta_info_[alloc, free].
[18853.876689] ==================================================================
[18853.876751] BUG: KASAN: use-after-free in mt76_txq_schedule+0x204/0xaf8 [mt76]
[18853.876773] Read of size 8 at addr ffffffaf989a2138 by task mt76-tx phy0/883
[18853.876786]
[18853.876810] CPU: 5 PID: 883 Comm: mt76-tx phy0 Not tainted 5.10.100-fix-510-56778d365941-kasan #5 0b01fbbcf41a530f52043508fec2e31a4215
[18853.876840] Call trace:
[18853.876861] dump_backtrace+0x0/0x3ec
[18853.876878] show_stack+0x20/0x2c
[18853.876899] dump_stack+0x11c/0x1ac
[18853.876918] print_address_description+0x74/0x514
[18853.876934] kasan_report+0x134/0x174
[18853.876948] __asan_report_load8_noabort+0x44/0x50
[18853.876976] mt76_txq_schedule+0x204/0xaf8 [mt76 074e03e4640e97fe7405ee1fab547b81c4fa45d2]
[18853.877002] mt76_txq_schedule_all+0x2c/0x48 [mt76 074e03e4640e97fe7405ee1fab547b81c4fa45d2]
[18853.877030] mt7921_tx_worker+0xa0/0x1cc [mt7921_common f0875ebac9d7b4754e1010549e7db50fbd90a047]
[18853.877054] __mt76_worker_fn+0x190/0x22c [mt76 074e03e4640e97fe7405ee1fab547b81c4fa45d2]
[18853.877071] kthread+0x2f8/0x3b8
[18853.877087] ret_from_fork+0x10/0x30
[18853.877098]
[18853.877112] Allocated by task 941:
[18853.877131] kasan_save_stack+0x38/0x68
[18853.877147] __kasan_kmalloc+0xd4/0xfc
[18853.877163] kasan_kmalloc+0x10/0x1c
[18853.877177] __kmalloc+0x264/0x3c4
[18853.877294] sta_info_alloc+0x460/0xf88 [mac80211]
[18853.877410] ieee80211_prep_connection+0x204/0x1ee0 [mac80211]
[18853.877523] ieee80211_mgd_auth+0x6c4/0xa4c [mac80211]
[18853.877635] ieee80211_auth+0x20/0x2c [mac80211]
[18853.877733] rdev_auth+0x7c/0x438 [cfg80211]
[18853.877826] cfg80211_mlme_auth+0x26c/0x390 [cfg80211]
[18853.877919] nl80211_authenticate+0x6d4/0x904 [cfg80211]
[18853.877938] genl_rcv_msg+0x748/0x93c
[18853.877954] netlink_rcv_skb+0x160/0x2a8
[18853.877969] genl_rcv+0x3c/0x54
[18853.877985] netlink_unicast_kernel+0x104/0x1ec
[18853.877999] netlink_unicast+0x178/0x268
[18853.878015] netlink_sendmsg+0x3cc/0x5f0
[18853.878030] sock_sendmsg+0xb4/0xd8
[18853.878043] ____sys_sendmsg+0x2f8/0x53c
[18853.878058] ___sys_sendmsg+0xe8/0x150
[18853.878071] __sys_sendmsg+0xc4/0x1f4
[18853.878087] __arm64_compat_sys_sendmsg+0x88/0x9c
[18853.878101] el0_svc_common+0x1b4/0x390
[18853.878115] do_el0_svc_compat+0x8c/0xdc
[18853.878131] el0_svc_compat+0x10/0x1c
[18853.878146] el0_sync_compat_handler+0xa8/0xcc
[18853.878161] el0_sync_compat+0x188/0x1c0
[18853.878171]
[18853.878183] Freed by task 10927:
[18853.878200] kasan_save_stack+0x38/0x68
[18853.878215] kasan_set_track+0x28/0x3c
[18853.878228] kasan_set_free_info+0x24/0x48
[18853.878244] __kasan_slab_free+0x11c/0x154
[18853.878259] kasan_slab_free+0x14/0x24
[18853.878273] slab_free_freelist_hook+0xac/0x1b0
[18853.878287] kfree+0x104/0x390
[18853.878402] sta_info_free+0x198/0x210 [mac80211]
[18853.878515] __sta_info_destroy_part2+0x230/0x2d4 [mac80211]
[18853.878628] __sta_info_flush+0x300/0x37c [mac80211]
[18853.878740] ieee80211_set_disassoc+0x2cc/0xa7c [mac80211]
[18853.878851] ieee80211_mgd_deauth+0x4a4/0x10a0 [mac80211]
[18853.878962] ieee80211_deauth+0x20/0x2c [mac80211]
[18853.879057] rdev_deauth+0x7c/0x438 [cfg80211]
[18853.879150] cfg80211_mlme_deauth+0x274/0x414 [cfg80211]
[18853.879243] cfg80211_mlme_down+0xe4/0x118 [cfg80211]
[18853.879335] cfg80211_disconnect+0x218/0x2d8 [cfg80211]
[18853.879427] __cfg80211_leave+0x17c/0x240 [cfg80211]
[18853.879519] cfg80211_leave+0x3c/0x58 [cfg80211]
[18853.879611] wiphy_suspend+0xdc/0x200 [cfg80211]
[18853.879628] dpm_run_callback+0x58/0x408
[18853.879642] __device_suspend+0x4cc/0x864
[18853.879658] async_suspend+0x34/0xf4
[18
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
dm ioctl: prevent potential spectre v1 gadget
It appears like cmd could be a Spectre v1 gadget as it's supplied by a
user and used as an array index. Prevent the contents of kernel memory
from being leaked to userspace via speculative execution by using
array_index_nospec. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix use after free in hci_send_acl
This fixes the following trace caused by receiving
HCI_EV_DISCONN_PHY_LINK_COMPLETE which does call hci_conn_del without
first checking if conn->type is in fact AMP_LINK and in case it is
do properly cleanup upper layers with hci_disconn_cfm:
==================================================================
BUG: KASAN: use-after-free in hci_send_acl+0xaba/0xc50
Read of size 8 at addr ffff88800e404818 by task bluetoothd/142
CPU: 0 PID: 142 Comm: bluetoothd Not tainted
5.17.0-rc5-00006-gda4022eeac1a #7
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x45/0x59
print_address_description.constprop.0+0x1f/0x150
kasan_report.cold+0x7f/0x11b
hci_send_acl+0xaba/0xc50
l2cap_do_send+0x23f/0x3d0
l2cap_chan_send+0xc06/0x2cc0
l2cap_sock_sendmsg+0x201/0x2b0
sock_sendmsg+0xdc/0x110
sock_write_iter+0x20f/0x370
do_iter_readv_writev+0x343/0x690
do_iter_write+0x132/0x640
vfs_writev+0x198/0x570
do_writev+0x202/0x280
do_syscall_64+0x38/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
RSP: 002b:00007ffce8a099b8 EFLAGS: 00000246 ORIG_RAX: 0000000000000014
Code: 0f 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b8 0f 1f 00 f3
0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 14 00 00 00 0f 05
<48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 89 54 24 1c 48 89 74 24 10
RDX: 0000000000000001 RSI: 00007ffce8a099e0 RDI: 0000000000000015
RAX: ffffffffffffffda RBX: 00007ffce8a099e0 RCX: 00007f788fc3cf77
R10: 00007ffce8af7080 R11: 0000000000000246 R12: 000055e4ccf75580
RBP: 0000000000000015 R08: 0000000000000002 R09: 0000000000000001
</TASK>
R13: 000055e4ccf754a0 R14: 000055e4ccf75cd0 R15: 000055e4ccf4a6b0
Allocated by task 45:
kasan_save_stack+0x1e/0x40
__kasan_kmalloc+0x81/0xa0
hci_chan_create+0x9a/0x2f0
l2cap_conn_add.part.0+0x1a/0xdc0
l2cap_connect_cfm+0x236/0x1000
le_conn_complete_evt+0x15a7/0x1db0
hci_le_conn_complete_evt+0x226/0x2c0
hci_le_meta_evt+0x247/0x450
hci_event_packet+0x61b/0xe90
hci_rx_work+0x4d5/0xc50
process_one_work+0x8fb/0x15a0
worker_thread+0x576/0x1240
kthread+0x29d/0x340
ret_from_fork+0x1f/0x30
Freed by task 45:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_set_free_info+0x20/0x30
__kasan_slab_free+0xfb/0x130
kfree+0xac/0x350
hci_conn_cleanup+0x101/0x6a0
hci_conn_del+0x27e/0x6c0
hci_disconn_phylink_complete_evt+0xe0/0x120
hci_event_packet+0x812/0xe90
hci_rx_work+0x4d5/0xc50
process_one_work+0x8fb/0x15a0
worker_thread+0x576/0x1240
kthread+0x29d/0x340
ret_from_fork+0x1f/0x30
The buggy address belongs to the object at ffff88800c0f0500
The buggy address is located 24 bytes inside of
which belongs to the cache kmalloc-128 of size 128
The buggy address belongs to the page:
128-byte region [ffff88800c0f0500, ffff88800c0f0580)
flags: 0x100000000000200(slab|node=0|zone=1)
page:00000000fe45cd86 refcount:1 mapcount:0
mapping:0000000000000000 index:0x0 pfn:0xc0f0
raw: 0000000000000000 0000000080100010 00000001ffffffff
0000000000000000
raw: 0100000000000200 ffffea00003a2c80 dead000000000004
ffff8880078418c0
page dumped because: kasan: bad access detected
ffff88800c0f0400: 00 00 00 00 00 00 00 00 00 00 00 00 00 fc fc fc
Memory state around the buggy address:
>ffff88800c0f0500: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
ffff88800c0f0480: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
ffff88800c0f0580: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
NFSD: Fix the behavior of READ near OFFSET_MAX
Dan Aloni reports:
> Due to commit 8cfb9015280d ("NFS: Always provide aligned buffers to
> the RPC read layers") on the client, a read of 0xfff is aligned up
> to server rsize of 0x1000.
>
> As a result, in a test where the server has a file of size
> 0x7fffffffffffffff, and the client tries to read from the offset
> 0x7ffffffffffff000, the read causes loff_t overflow in the server
> and it returns an NFS code of EINVAL to the client. The client as
> a result indefinitely retries the request.
The Linux NFS client does not handle NFS?ERR_INVAL, even though all
NFS specifications permit servers to return that status code for a
READ.
Instead of NFS?ERR_INVAL, have out-of-range READ requests succeed
and return a short result. Set the EOF flag in the result to prevent
the client from retrying the READ request. This behavior appears to
be consistent with Solaris NFS servers.
Note that NFSv3 and NFSv4 use u64 offset values on the wire. These
must be converted to loff_t internally before use -- an implicit
type cast is not adequate for this purpose. Otherwise VFS checks
against sb->s_maxbytes do not work properly. |
In the Linux kernel, the following vulnerability has been resolved:
perf: Fix list corruption in perf_cgroup_switch()
There's list corruption on cgrp_cpuctx_list. This happens on the
following path:
perf_cgroup_switch: list_for_each_entry(cgrp_cpuctx_list)
cpu_ctx_sched_in
ctx_sched_in
ctx_pinned_sched_in
merge_sched_in
perf_cgroup_event_disable: remove the event from the list
Use list_for_each_entry_safe() to allow removing an entry during
iteration. |
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: nSVM: fix potential NULL derefernce on nested migration
Turns out that due to review feedback and/or rebases
I accidentally moved the call to nested_svm_load_cr3 to be too early,
before the NPT is enabled, which is very wrong to do.
KVM can't even access guest memory at that point as nested NPT
is needed for that, and of course it won't initialize the walk_mmu,
which is main issue the patch was addressing.
Fix this for real. |
In the Linux kernel, the following vulnerability has been resolved:
vsock: remove vsock from connected table when connect is interrupted by a signal
vsock_connect() expects that the socket could already be in the
TCP_ESTABLISHED state when the connecting task wakes up with a signal
pending. If this happens the socket will be in the connected table, and
it is not removed when the socket state is reset. In this situation it's
common for the process to retry connect(), and if the connection is
successful the socket will be added to the connected table a second
time, corrupting the list.
Prevent this by calling vsock_remove_connected() if a signal is received
while waiting for a connection. This is harmless if the socket is not in
the connected table, and if it is in the table then removing it will
prevent list corruption from a double add.
Note for backporting: this patch requires d5afa82c977e ("vsock: correct
removal of socket from the list"), which is in all current stable trees
except 4.9.y. |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: sr: fix out-of-bounds read when setting HMAC data.
The SRv6 layer allows defining HMAC data that can later be used to sign IPv6
Segment Routing Headers. This configuration is realised via netlink through
four attributes: SEG6_ATTR_HMACKEYID, SEG6_ATTR_SECRET, SEG6_ATTR_SECRETLEN and
SEG6_ATTR_ALGID. Because the SECRETLEN attribute is decoupled from the actual
length of the SECRET attribute, it is possible to provide invalid combinations
(e.g., secret = "", secretlen = 64). This case is not checked in the code and
with an appropriately crafted netlink message, an out-of-bounds read of up
to 64 bytes (max secret length) can occur past the skb end pointer and into
skb_shared_info:
Breakpoint 1, seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208
208 memcpy(hinfo->secret, secret, slen);
(gdb) bt
#0 seg6_genl_sethmac (skb=<optimized out>, info=<optimized out>) at net/ipv6/seg6.c:208
#1 0xffffffff81e012e9 in genl_family_rcv_msg_doit (skb=skb@entry=0xffff88800b1f9f00, nlh=nlh@entry=0xffff88800b1b7600,
extack=extack@entry=0xffffc90000ba7af0, ops=ops@entry=0xffffc90000ba7a80, hdrlen=4, net=0xffffffff84237580 <init_net>, family=<optimized out>,
family=<optimized out>) at net/netlink/genetlink.c:731
#2 0xffffffff81e01435 in genl_family_rcv_msg (extack=0xffffc90000ba7af0, nlh=0xffff88800b1b7600, skb=0xffff88800b1f9f00,
family=0xffffffff82fef6c0 <seg6_genl_family>) at net/netlink/genetlink.c:775
#3 genl_rcv_msg (skb=0xffff88800b1f9f00, nlh=0xffff88800b1b7600, extack=0xffffc90000ba7af0) at net/netlink/genetlink.c:792
#4 0xffffffff81dfffc3 in netlink_rcv_skb (skb=skb@entry=0xffff88800b1f9f00, cb=cb@entry=0xffffffff81e01350 <genl_rcv_msg>)
at net/netlink/af_netlink.c:2501
#5 0xffffffff81e00919 in genl_rcv (skb=0xffff88800b1f9f00) at net/netlink/genetlink.c:803
#6 0xffffffff81dff6ae in netlink_unicast_kernel (ssk=0xffff888010eec800, skb=0xffff88800b1f9f00, sk=0xffff888004aed000)
at net/netlink/af_netlink.c:1319
#7 netlink_unicast (ssk=ssk@entry=0xffff888010eec800, skb=skb@entry=0xffff88800b1f9f00, portid=portid@entry=0, nonblock=<optimized out>)
at net/netlink/af_netlink.c:1345
#8 0xffffffff81dff9a4 in netlink_sendmsg (sock=<optimized out>, msg=0xffffc90000ba7e48, len=<optimized out>) at net/netlink/af_netlink.c:1921
...
(gdb) p/x ((struct sk_buff *)0xffff88800b1f9f00)->head + ((struct sk_buff *)0xffff88800b1f9f00)->end
$1 = 0xffff88800b1b76c0
(gdb) p/x secret
$2 = 0xffff88800b1b76c0
(gdb) p slen
$3 = 64 '@'
The OOB data can then be read back from userspace by dumping HMAC state. This
commit fixes this by ensuring SECRETLEN cannot exceed the actual length of
SECRET. |
In the Linux kernel, the following vulnerability has been resolved:
nvme-tcp: fix UAF when detecting digest errors
We should also bail from the io_work loop when we set rd_enabled to true,
so we don't attempt to read data from the socket when the TCP stream is
already out-of-sync or corrupted. |