CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
jfs: truncate good inode pages when hard link is 0
The fileset value of the inode copy from the disk by the reproducer is
AGGR_RESERVED_I. When executing evict, its hard link number is 0, so its
inode pages are not truncated. This causes the bugon to be triggered when
executing clear_inode() because nrpages is greater than 0. |
In the Linux kernel, the following vulnerability has been resolved:
parisc: Drop WARN_ON_ONCE() from flush_cache_vmap
I have observed warning to occassionally trigger. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: qgroup: fix race between quota disable and quota rescan ioctl
There's a race between a task disabling quotas and another running the
rescan ioctl that can result in a use-after-free of qgroup records from
the fs_info->qgroup_tree rbtree.
This happens as follows:
1) Task A enters btrfs_ioctl_quota_rescan() -> btrfs_qgroup_rescan();
2) Task B enters btrfs_quota_disable() and calls
btrfs_qgroup_wait_for_completion(), which does nothing because at that
point fs_info->qgroup_rescan_running is false (it wasn't set yet by
task A);
3) Task B calls btrfs_free_qgroup_config() which starts freeing qgroups
from fs_info->qgroup_tree without taking the lock fs_info->qgroup_lock;
4) Task A enters qgroup_rescan_zero_tracking() which starts iterating
the fs_info->qgroup_tree tree while holding fs_info->qgroup_lock,
but task B is freeing qgroup records from that tree without holding
the lock, resulting in a use-after-free.
Fix this by taking fs_info->qgroup_lock at btrfs_free_qgroup_config().
Also at btrfs_qgroup_rescan() don't start the rescan worker if quotas
were already disabled. |
OpenPrinting CUPS is an open source printing system for Linux and other Unix-like operating systems. In versions 2.4.12 and earlier, an unsafe deserialization and validation of printer attributes causes null dereference in the libcups library. This is a remote DoS vulnerability available in local subnet in default configurations. It can cause the cups & cups-browsed to crash, on all the machines in local network who are listening for printers (so by default for all regular linux machines). On systems where the vulnerability CVE-2024-47176 (cups-filters 1.x/cups-browsed 2.x vulnerability) was not fixed, and the firewall on the machine does not reject incoming communication to IPP port, and the machine is set to be available to public internet, attack vector "Network" is possible. The current versions of CUPS and cups-browsed projects have the attack vector "Adjacent" in their default configurations. Version 2.4.13 contains a patch for CVE-2025-58364. |
In the Linux kernel, the following vulnerability has been resolved:
ARM: rockchip: fix kernel hang during smp initialization
In order to bring up secondary CPUs main CPU write trampoline
code to SRAM. The trampoline code is written while secondary
CPUs are powered on (at least that true for RK3188 CPU).
Sometimes that leads to kernel hang. Probably because secondary
CPU execute trampoline code while kernel doesn't expect.
The patch moves SRAM initialization step to the point where all
secondary CPUs are powered down.
That fixes rarely hangs on RK3188:
[ 0.091568] CPU0: thread -1, cpu 0, socket 0, mpidr 80000000
[ 0.091996] rockchip_smp_prepare_cpus: ncores 4 |
In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: exynos: Fix programming of HCI_UTRL_NEXUS_TYPE
On Google gs101, the number of UTP transfer request slots (nutrs) is 32,
and in this case the driver ends up programming the UTRL_NEXUS_TYPE
incorrectly as 0.
This is because the left hand side of the shift is 1, which is of type
int, i.e. 31 bits wide. Shifting by more than that width results in
undefined behaviour.
Fix this by switching to the BIT() macro, which applies correct type
casting as required. This ensures the correct value is written to
UTRL_NEXUS_TYPE (0xffffffff on gs101), and it also fixes a UBSAN shift
warning:
UBSAN: shift-out-of-bounds in drivers/ufs/host/ufs-exynos.c:1113:21
shift exponent 32 is too large for 32-bit type 'int'
For consistency, apply the same change to the nutmrs / UTMRL_NEXUS_TYPE
write. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/siw: Fix the sendmsg byte count in siw_tcp_sendpages
Ever since commit c2ff29e99a76 ("siw: Inline do_tcp_sendpages()"),
we have been doing this:
static int siw_tcp_sendpages(struct socket *s, struct page **page, int offset,
size_t size)
[...]
/* Calculate the number of bytes we need to push, for this page
* specifically */
size_t bytes = min_t(size_t, PAGE_SIZE - offset, size);
/* If we can't splice it, then copy it in, as normal */
if (!sendpage_ok(page[i]))
msg.msg_flags &= ~MSG_SPLICE_PAGES;
/* Set the bvec pointing to the page, with len $bytes */
bvec_set_page(&bvec, page[i], bytes, offset);
/* Set the iter to $size, aka the size of the whole sendpages (!!!) */
iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
try_page_again:
lock_sock(sk);
/* Sendmsg with $size size (!!!) */
rv = tcp_sendmsg_locked(sk, &msg, size);
This means we've been sending oversized iov_iters and tcp_sendmsg calls
for a while. This has a been a benign bug because sendpage_ok() always
returned true. With the recent slab allocator changes being slowly
introduced into next (that disallow sendpage on large kmalloc
allocations), we have recently hit out-of-bounds crashes, due to slight
differences in iov_iter behavior between the MSG_SPLICE_PAGES and
"regular" copy paths:
(MSG_SPLICE_PAGES)
skb_splice_from_iter
iov_iter_extract_pages
iov_iter_extract_bvec_pages
uses i->nr_segs to correctly stop in its tracks before OoB'ing everywhere
skb_splice_from_iter gets a "short" read
(!MSG_SPLICE_PAGES)
skb_copy_to_page_nocache copy=iov_iter_count
[...]
copy_from_iter
/* this doesn't help */
if (unlikely(iter->count < len))
len = iter->count;
iterate_bvec
... and we run off the bvecs
Fix this by properly setting the iov_iter's byte count, plus sending the
correct byte count to tcp_sendmsg_locked. |
In the Linux kernel, the following vulnerability has been resolved:
gfs2: Set .migrate_folio in gfs2_{rgrp,meta}_aops
Clears up the warning added in 7ee3647243e5 ("migrate: Remove call to
->writepage") that occurs in various xfstests, causing "something found
in dmesg" failures.
[ 341.136573] gfs2_meta_aops does not implement migrate_folio
[ 341.136953] WARNING: CPU: 1 PID: 36 at mm/migrate.c:944 move_to_new_folio+0x2f8/0x300 |
In the Linux kernel, the following vulnerability has been resolved:
fs: Prevent file descriptor table allocations exceeding INT_MAX
When sysctl_nr_open is set to a very high value (for example, 1073741816
as set by systemd), processes attempting to use file descriptors near
the limit can trigger massive memory allocation attempts that exceed
INT_MAX, resulting in a WARNING in mm/slub.c:
WARNING: CPU: 0 PID: 44 at mm/slub.c:5027 __kvmalloc_node_noprof+0x21a/0x288
This happens because kvmalloc_array() and kvmalloc() check if the
requested size exceeds INT_MAX and emit a warning when the allocation is
not flagged with __GFP_NOWARN.
Specifically, when nr_open is set to 1073741816 (0x3ffffff8) and a
process calls dup2(oldfd, 1073741880), the kernel attempts to allocate:
- File descriptor array: 1073741880 * 8 bytes = 8,589,935,040 bytes
- Multiple bitmaps: ~400MB
- Total allocation size: > 8GB (exceeding INT_MAX = 2,147,483,647)
Reproducer:
1. Set /proc/sys/fs/nr_open to 1073741816:
# echo 1073741816 > /proc/sys/fs/nr_open
2. Run a program that uses a high file descriptor:
#include <unistd.h>
#include <sys/resource.h>
int main() {
struct rlimit rlim = {1073741824, 1073741824};
setrlimit(RLIMIT_NOFILE, &rlim);
dup2(2, 1073741880); // Triggers the warning
return 0;
}
3. Observe WARNING in dmesg at mm/slub.c:5027
systemd commit a8b627a introduced automatic bumping of fs.nr_open to the
maximum possible value. The rationale was that systems with memory
control groups (memcg) no longer need separate file descriptor limits
since memory is properly accounted. However, this change overlooked
that:
1. The kernel's allocation functions still enforce INT_MAX as a maximum
size regardless of memcg accounting
2. Programs and tests that legitimately test file descriptor limits can
inadvertently trigger massive allocations
3. The resulting allocations (>8GB) are impractical and will always fail
systemd's algorithm starts with INT_MAX and keeps halving the value
until the kernel accepts it. On most systems, this results in nr_open
being set to 1073741816 (0x3ffffff8), which is just under 1GB of file
descriptors.
While processes rarely use file descriptors near this limit in normal
operation, certain selftests (like
tools/testing/selftests/core/unshare_test.c) and programs that test file
descriptor limits can trigger this issue.
Fix this by adding a check in alloc_fdtable() to ensure the requested
allocation size does not exceed INT_MAX. This causes the operation to
fail with -EMFILE instead of triggering a kernel warning and avoids the
impractical >8GB memory allocation request. |
In the Linux kernel, the following vulnerability has been resolved:
mm/kmemleak: avoid soft lockup in __kmemleak_do_cleanup()
A soft lockup warning was observed on a relative small system x86-64
system with 16 GB of memory when running a debug kernel with kmemleak
enabled.
watchdog: BUG: soft lockup - CPU#8 stuck for 33s! [kworker/8:1:134]
The test system was running a workload with hot unplug happening in
parallel. Then kemleak decided to disable itself due to its inability to
allocate more kmemleak objects. The debug kernel has its
CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE set to 40,000.
The soft lockup happened in kmemleak_do_cleanup() when the existing
kmemleak objects were being removed and deleted one-by-one in a loop via a
workqueue. In this particular case, there are at least 40,000 objects
that need to be processed and given the slowness of a debug kernel and the
fact that a raw_spinlock has to be acquired and released in
__delete_object(), it could take a while to properly handle all these
objects.
As kmemleak has been disabled in this case, the object removal and
deletion process can be further optimized as locking isn't really needed.
However, it is probably not worth the effort to optimize for such an edge
case that should rarely happen. So the simple solution is to call
cond_resched() at periodic interval in the iteration loop to avoid soft
lockup. |
In the Linux kernel, the following vulnerability has been resolved:
PCI: endpoint: Fix configfs group list head handling
Doing a list_del() on the epf_group field of struct pci_epf_driver in
pci_epf_remove_cfs() is not correct as this field is a list head, not
a list entry. This list_del() call triggers a KASAN warning when an
endpoint function driver which has a configfs attribute group is torn
down:
==================================================================
BUG: KASAN: slab-use-after-free in pci_epf_remove_cfs+0x17c/0x198
Write of size 8 at addr ffff00010f4a0d80 by task rmmod/319
CPU: 3 UID: 0 PID: 319 Comm: rmmod Not tainted 6.16.0-rc2 #1 NONE
Hardware name: Radxa ROCK 5B (DT)
Call trace:
show_stack+0x2c/0x84 (C)
dump_stack_lvl+0x70/0x98
print_report+0x17c/0x538
kasan_report+0xb8/0x190
__asan_report_store8_noabort+0x20/0x2c
pci_epf_remove_cfs+0x17c/0x198
pci_epf_unregister_driver+0x18/0x30
nvmet_pci_epf_cleanup_module+0x24/0x30 [nvmet_pci_epf]
__arm64_sys_delete_module+0x264/0x424
invoke_syscall+0x70/0x260
el0_svc_common.constprop.0+0xac/0x230
do_el0_svc+0x40/0x58
el0_svc+0x48/0xdc
el0t_64_sync_handler+0x10c/0x138
el0t_64_sync+0x198/0x19c
...
Remove this incorrect list_del() call from pci_epf_remove_cfs(). |
In the Linux kernel, the following vulnerability has been resolved:
mm/mremap: fix WARN with uffd that has remap events disabled
Registering userfaultd on a VMA that spans at least one PMD and then
mremap()'ing that VMA can trigger a WARN when recovering from a failed
page table move due to a page table allocation error.
The code ends up doing the right thing (recurse, avoiding moving actual
page tables), but triggering that WARN is unpleasant:
WARNING: CPU: 2 PID: 6133 at mm/mremap.c:357 move_normal_pmd mm/mremap.c:357 [inline]
WARNING: CPU: 2 PID: 6133 at mm/mremap.c:357 move_pgt_entry mm/mremap.c:595 [inline]
WARNING: CPU: 2 PID: 6133 at mm/mremap.c:357 move_page_tables+0x3832/0x44a0 mm/mremap.c:852
Modules linked in:
CPU: 2 UID: 0 PID: 6133 Comm: syz.0.19 Not tainted 6.17.0-rc1-syzkaller-00004-g53e760d89498 #0 PREEMPT(full)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
RIP: 0010:move_normal_pmd mm/mremap.c:357 [inline]
RIP: 0010:move_pgt_entry mm/mremap.c:595 [inline]
RIP: 0010:move_page_tables+0x3832/0x44a0 mm/mremap.c:852
Code: ...
RSP: 0018:ffffc900037a76d8 EFLAGS: 00010293
RAX: 0000000000000000 RBX: 0000000032930007 RCX: ffffffff820c6645
RDX: ffff88802e56a440 RSI: ffffffff820c7201 RDI: 0000000000000007
RBP: ffff888037728fc0 R08: 0000000000000007 R09: 0000000000000000
R10: 0000000032930007 R11: 0000000000000000 R12: 0000000000000000
R13: ffffc900037a79a8 R14: 0000000000000001 R15: dffffc0000000000
FS: 000055556316a500(0000) GS:ffff8880d68bc000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000001b30863fff CR3: 0000000050171000 CR4: 0000000000352ef0
Call Trace:
<TASK>
copy_vma_and_data+0x468/0x790 mm/mremap.c:1215
move_vma+0x548/0x1780 mm/mremap.c:1282
mremap_to+0x1b7/0x450 mm/mremap.c:1406
do_mremap+0xfad/0x1f80 mm/mremap.c:1921
__do_sys_mremap+0x119/0x170 mm/mremap.c:1977
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x4c0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f00d0b8ebe9
Code: ...
RSP: 002b:00007ffe5ea5ee98 EFLAGS: 00000246 ORIG_RAX: 0000000000000019
RAX: ffffffffffffffda RBX: 00007f00d0db5fa0 RCX: 00007f00d0b8ebe9
RDX: 0000000000400000 RSI: 0000000000c00000 RDI: 0000200000000000
RBP: 00007ffe5ea5eef0 R08: 0000200000c00000 R09: 0000000000000000
R10: 0000000000000003 R11: 0000000000000246 R12: 0000000000000002
R13: 00007f00d0db5fa0 R14: 00007f00d0db5fa0 R15: 0000000000000005
</TASK>
The underlying issue is that we recurse during the original page table
move, but not during the recovery move.
Fix it by checking for both VMAs and performing the check before the
pmd_none() sanity check.
Add a new helper where we perform+document that check for the PMD and PUD
level.
Thanks to Harry for bisecting. |
In the Linux kernel, the following vulnerability has been resolved:
iommu/arm-smmu-qcom: Add SM6115 MDSS compatible
Add the SM6115 MDSS compatible to clients compatible list, as it also
needs that workaround.
Without this workaround, for example, QRB4210 RB2 which is based on
SM4250/SM6115 generates a lot of smmu unhandled context faults during
boot:
arm_smmu_context_fault: 116854 callbacks suppressed
arm-smmu c600000.iommu: Unhandled context fault: fsr=0x402,
iova=0x5c0ec600, fsynr=0x320021, cbfrsynra=0x420, cb=5
arm-smmu c600000.iommu: FSR = 00000402 [Format=2 TF], SID=0x420
arm-smmu c600000.iommu: FSYNR0 = 00320021 [S1CBNDX=50 PNU PLVL=1]
arm-smmu c600000.iommu: Unhandled context fault: fsr=0x402,
iova=0x5c0d7800, fsynr=0x320021, cbfrsynra=0x420, cb=5
arm-smmu c600000.iommu: FSR = 00000402 [Format=2 TF], SID=0x420
and also failed initialisation of lontium lt9611uxc, gpu and dpu is
observed:
(binding MDSS components triggered by lt9611uxc have failed)
------------[ cut here ]------------
!aspace
WARNING: CPU: 6 PID: 324 at drivers/gpu/drm/msm/msm_gem_vma.c:130 msm_gem_vma_init+0x150/0x18c [msm]
Modules linked in: ... (long list of modules)
CPU: 6 UID: 0 PID: 324 Comm: (udev-worker) Not tainted 6.15.0-03037-gaacc73ceeb8b #4 PREEMPT
Hardware name: Qualcomm Technologies, Inc. QRB4210 RB2 (DT)
pstate: 80000005 (Nzcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : msm_gem_vma_init+0x150/0x18c [msm]
lr : msm_gem_vma_init+0x150/0x18c [msm]
sp : ffff80008144b280
...
Call trace:
msm_gem_vma_init+0x150/0x18c [msm] (P)
get_vma_locked+0xc0/0x194 [msm]
msm_gem_get_and_pin_iova_range+0x4c/0xdc [msm]
msm_gem_kernel_new+0x48/0x160 [msm]
msm_gpu_init+0x34c/0x53c [msm]
adreno_gpu_init+0x1b0/0x2d8 [msm]
a6xx_gpu_init+0x1e8/0x9e0 [msm]
adreno_bind+0x2b8/0x348 [msm]
component_bind_all+0x100/0x230
msm_drm_bind+0x13c/0x3d0 [msm]
try_to_bring_up_aggregate_device+0x164/0x1d0
__component_add+0xa4/0x174
component_add+0x14/0x20
dsi_dev_attach+0x20/0x34 [msm]
dsi_host_attach+0x58/0x98 [msm]
devm_mipi_dsi_attach+0x34/0x90
lt9611uxc_attach_dsi.isra.0+0x94/0x124 [lontium_lt9611uxc]
lt9611uxc_probe+0x540/0x5fc [lontium_lt9611uxc]
i2c_device_probe+0x148/0x2a8
really_probe+0xbc/0x2c0
__driver_probe_device+0x78/0x120
driver_probe_device+0x3c/0x154
__driver_attach+0x90/0x1a0
bus_for_each_dev+0x68/0xb8
driver_attach+0x24/0x30
bus_add_driver+0xe4/0x208
driver_register+0x68/0x124
i2c_register_driver+0x48/0xcc
lt9611uxc_driver_init+0x20/0x1000 [lontium_lt9611uxc]
do_one_initcall+0x60/0x1d4
do_init_module+0x54/0x1fc
load_module+0x1748/0x1c8c
init_module_from_file+0x74/0xa0
__arm64_sys_finit_module+0x130/0x2f8
invoke_syscall+0x48/0x104
el0_svc_common.constprop.0+0xc0/0xe0
do_el0_svc+0x1c/0x28
el0_svc+0x2c/0x80
el0t_64_sync_handler+0x10c/0x138
el0t_64_sync+0x198/0x19c
---[ end trace 0000000000000000 ]---
msm_dpu 5e01000.display-controller: [drm:msm_gpu_init [msm]] *ERROR* could not allocate memptrs: -22
msm_dpu 5e01000.display-controller: failed to load adreno gpu
platform a400000.remoteproc:glink-edge:apr:service@7:dais: Adding to iommu group 19
msm_dpu 5e01000.display-controller: failed to bind 5900000.gpu (ops a3xx_ops [msm]): -22
msm_dpu 5e01000.display-controller: adev bind failed: -22
lt9611uxc 0-002b: failed to attach dsi to host
lt9611uxc 0-002b: probe with driver lt9611uxc failed with error -22 |
In the Linux kernel, the following vulnerability has been resolved:
crypto: x86/aegis - Add missing error checks
The skcipher_walk functions can allocate memory and can fail, so
checking for errors is necessary. |
In the Linux kernel, the following vulnerability has been resolved:
usb: core: config: Prevent OOB read in SS endpoint companion parsing
usb_parse_ss_endpoint_companion() checks descriptor type before length,
enabling a potentially odd read outside of the buffer size.
Fix this up by checking the size first before looking at any of the
fields in the descriptor. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: subpage: keep TOWRITE tag until folio is cleaned
btrfs_subpage_set_writeback() calls folio_start_writeback() the first time
a folio is written back, and it also clears the PAGECACHE_TAG_TOWRITE tag
even if there are still dirty blocks in the folio. This can break ordering
guarantees, such as those required by btrfs_wait_ordered_extents().
That ordering breakage leads to a real failure. For example, running
generic/464 on a zoned setup will hit the following ASSERT. This happens
because the broken ordering fails to flush existing dirty pages before the
file size is truncated.
assertion failed: !list_empty(&ordered->list) :: 0, in fs/btrfs/zoned.c:1899
------------[ cut here ]------------
kernel BUG at fs/btrfs/zoned.c:1899!
Oops: invalid opcode: 0000 [#1] SMP NOPTI
CPU: 2 UID: 0 PID: 1906169 Comm: kworker/u130:2 Kdump: loaded Not tainted 6.16.0-rc6-BTRFS-ZNS+ #554 PREEMPT(voluntary)
Hardware name: Supermicro Super Server/H12SSL-NT, BIOS 2.0 02/22/2021
Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
RIP: 0010:btrfs_finish_ordered_zoned.cold+0x50/0x52 [btrfs]
RSP: 0018:ffffc9002efdbd60 EFLAGS: 00010246
RAX: 000000000000004c RBX: ffff88811923c4e0 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff827e38b1 RDI: 00000000ffffffff
RBP: ffff88810005d000 R08: 00000000ffffdfff R09: ffffffff831051c8
R10: ffffffff83055220 R11: 0000000000000000 R12: ffff8881c2458c00
R13: ffff88811923c540 R14: ffff88811923c5e8 R15: ffff8881c1bd9680
FS: 0000000000000000(0000) GS:ffff88a04acd0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f907c7a918c CR3: 0000000004024000 CR4: 0000000000350ef0
Call Trace:
<TASK>
? srso_return_thunk+0x5/0x5f
btrfs_finish_ordered_io+0x4a/0x60 [btrfs]
btrfs_work_helper+0xf9/0x490 [btrfs]
process_one_work+0x204/0x590
? srso_return_thunk+0x5/0x5f
worker_thread+0x1d6/0x3d0
? __pfx_worker_thread+0x10/0x10
kthread+0x118/0x230
? __pfx_kthread+0x10/0x10
ret_from_fork+0x205/0x260
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Consider process A calling writepages() with WB_SYNC_NONE. In zoned mode or
for compressed writes, it locks several folios for delalloc and starts
writing them out. Let's call the last locked folio folio X. Suppose the
write range only partially covers folio X, leaving some pages dirty.
Process A calls btrfs_subpage_set_writeback() when building a bio. This
function call clears the TOWRITE tag of folio X, whose size = 8K and
the block size = 4K. It is following state.
0 4K 8K
|/////|/////| (flag: DIRTY, tag: DIRTY)
<-----> Process A will write this range.
Now suppose process B concurrently calls writepages() with WB_SYNC_ALL. It
calls tag_pages_for_writeback() to tag dirty folios with
PAGECACHE_TAG_TOWRITE. Since folio X is still dirty, it gets tagged. Then,
B collects tagged folios using filemap_get_folios_tag() and must wait for
folio X to be written before returning from writepages().
0 4K 8K
|/////|/////| (flag: DIRTY, tag: DIRTY|TOWRITE)
However, between tagging and collecting, process A may call
btrfs_subpage_set_writeback() and clear folio X's TOWRITE tag.
0 4K 8K
| |/////| (flag: DIRTY|WRITEBACK, tag: DIRTY)
As a result, process B won't see folio X in its batch, and returns without
waiting for it. This breaks the WB_SYNC_ALL ordering requirement.
Fix this by using btrfs_subpage_set_writeback_keepwrite(), which retains
the TOWRITE tag. We now manually clear the tag only after the folio becomes
clean, via the xas operation. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: do not allow relocation of partially dropped subvolumes
[BUG]
There is an internal report that balance triggered transaction abort,
with the following call trace:
item 85 key (594509824 169 0) itemoff 12599 itemsize 33
extent refs 1 gen 197740 flags 2
ref#0: tree block backref root 7
item 86 key (594558976 169 0) itemoff 12566 itemsize 33
extent refs 1 gen 197522 flags 2
ref#0: tree block backref root 7
...
BTRFS error (device loop0): extent item not found for insert, bytenr 594526208 num_bytes 16384 parent 449921024 root_objectid 934 owner 1 offset 0
BTRFS error (device loop0): failed to run delayed ref for logical 594526208 num_bytes 16384 type 182 action 1 ref_mod 1: -117
------------[ cut here ]------------
BTRFS: Transaction aborted (error -117)
WARNING: CPU: 1 PID: 6963 at ../fs/btrfs/extent-tree.c:2168 btrfs_run_delayed_refs+0xfa/0x110 [btrfs]
And btrfs check doesn't report anything wrong related to the extent
tree.
[CAUSE]
The cause is a little complex, firstly the extent tree indeed doesn't
have the backref for 594526208.
The extent tree only have the following two backrefs around that bytenr
on-disk:
item 65 key (594509824 METADATA_ITEM 0) itemoff 13880 itemsize 33
refs 1 gen 197740 flags TREE_BLOCK
tree block skinny level 0
(176 0x7) tree block backref root CSUM_TREE
item 66 key (594558976 METADATA_ITEM 0) itemoff 13847 itemsize 33
refs 1 gen 197522 flags TREE_BLOCK
tree block skinny level 0
(176 0x7) tree block backref root CSUM_TREE
But the such missing backref item is not an corruption on disk, as the
offending delayed ref belongs to subvolume 934, and that subvolume is
being dropped:
item 0 key (934 ROOT_ITEM 198229) itemoff 15844 itemsize 439
generation 198229 root_dirid 256 bytenr 10741039104 byte_limit 0 bytes_used 345571328
last_snapshot 198229 flags 0x1000000000001(RDONLY) refs 0
drop_progress key (206324 EXTENT_DATA 2711650304) drop_level 2
level 2 generation_v2 198229
And that offending tree block 594526208 is inside the dropped range of
that subvolume. That explains why there is no backref item for that
bytenr and why btrfs check is not reporting anything wrong.
But this also shows another problem, as btrfs will do all the orphan
subvolume cleanup at a read-write mount.
So half-dropped subvolume should not exist after an RW mount, and
balance itself is also exclusive to subvolume cleanup, meaning we
shouldn't hit a subvolume half-dropped during relocation.
The root cause is, there is no orphan item for this subvolume.
In fact there are 5 subvolumes from around 2021 that have the same
problem.
It looks like the original report has some older kernels running, and
caused those zombie subvolumes.
Thankfully upstream commit 8d488a8c7ba2 ("btrfs: fix subvolume/snapshot
deletion not triggered on mount") has long fixed the bug.
[ENHANCEMENT]
For repairing such old fs, btrfs-progs will be enhanced.
Considering how delayed the problem will show up (at run delayed ref
time) and at that time we have to abort transaction already, it is too
late.
Instead here we reject any half-dropped subvolume for reloc tree at the
earliest time, preventing confusion and extra time wasted on debugging
similar bugs. |
In the Linux kernel, the following vulnerability has been resolved:
crypto: acomp - Fix CFI failure due to type punning
To avoid a crash when control flow integrity is enabled, make the
workspace ("stream") free function use a consistent type, and call it
through a function pointer that has that same type. |
In the Linux kernel, the following vulnerability has been resolved:
net: bridge: fix soft lockup in br_multicast_query_expired()
When set multicast_query_interval to a large value, the local variable
'time' in br_multicast_send_query() may overflow. If the time is smaller
than jiffies, the timer will expire immediately, and then call mod_timer()
again, which creates a loop and may trigger the following soft lockup
issue.
watchdog: BUG: soft lockup - CPU#1 stuck for 221s! [rb_consumer:66]
CPU: 1 UID: 0 PID: 66 Comm: rb_consumer Not tainted 6.16.0+ #259 PREEMPT(none)
Call Trace:
<IRQ>
__netdev_alloc_skb+0x2e/0x3a0
br_ip6_multicast_alloc_query+0x212/0x1b70
__br_multicast_send_query+0x376/0xac0
br_multicast_send_query+0x299/0x510
br_multicast_query_expired.constprop.0+0x16d/0x1b0
call_timer_fn+0x3b/0x2a0
__run_timers+0x619/0x950
run_timer_softirq+0x11c/0x220
handle_softirqs+0x18e/0x560
__irq_exit_rcu+0x158/0x1a0
sysvec_apic_timer_interrupt+0x76/0x90
</IRQ>
This issue can be reproduced with:
ip link add br0 type bridge
echo 1 > /sys/class/net/br0/bridge/multicast_querier
echo 0xffffffffffffffff >
/sys/class/net/br0/bridge/multicast_query_interval
ip link set dev br0 up
The multicast_startup_query_interval can also cause this issue. Similar to
the commit 99b40610956a ("net: bridge: mcast: add and enforce query
interval minimum"), add check for the query interval maximum to fix this
issue. |
In the Linux kernel, the following vulnerability has been resolved:
drm/hisilicon/hibmc: fix the hibmc loaded failed bug
When hibmc loaded failed, the driver use hibmc_unload to free the
resource, but the mutexes in mode.config are not init, which will
access an NULL pointer. Just change goto statement to return, because
hibnc_hw_init() doesn't need to free anything. |