| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Insufficient compartmentalization in HECI subsystem for the Intel(R) SPS before versions SPS_E5_04.01.04.516.0, SPS_E5_04.04.04.033.0, SPS_E5_04.04.03.281.0, SPS_E5_03.01.03.116.0, SPS_E3_05.01.04.309.0, SPS_02.04.00.101.0, SPS_SoC-A_05.00.03.114.0, SPS_SoC-X_04.00.04.326.0, SPS_SoC-X_03.00.03.117.0, IGN_E5_91.00.00.167.0, SPS_PHI_03.01.03.078.0 may allow an authenticated user to potentially enable escalation of privilege via physical access. |
| Page table walks conducted by the MMU during virtual to physical address translation leave a trace in the last level cache of modern AMD processors. By performing a side-channel attack on the MMU operations, it is possible to leak data and code pointers from JavaScript, breaking ASLR. |
| Page table walks conducted by the MMU during virtual to physical address translation leave a trace in the last level cache of modern Intel processors. By performing a side-channel attack on the MMU operations, it is possible to leak data and code pointers from JavaScript, breaking ASLR. |
| Page table walks conducted by the MMU during virtual to physical address translation leave a trace in the last level cache of modern ARM processors. By performing a side-channel attack on the MMU operations, it is possible to leak data and code pointers from JavaScript, breaking ASLR. |
| Insufficient control flow management in the BIOS firmware for some Intel(R) Processors may allow a privileged user to potentially enable denial of service via local access. |
| Improper access control in the BIOS firmware for some Intel(R) Processors may allow a privileged user to potentially enable escalation of privilege via local access. |
| Insufficient granularity of access control in out-of-band management in some Intel(R) Atom and Intel Xeon Scalable Processors may allow a privileged user to potentially enable escalation of privilege via adjacent network access. |
| Systems with microprocessors utilizing speculative execution and branch prediction may allow unauthorized disclosure of information to an attacker with local user access via a side-channel analysis. |
| Hardware allows activation of test or debug logic at runtime for some Intel(R) processors which may allow an unauthenticated user to potentially enable escalation of privilege via physical access. |
| Insecure default variable initialization for the Intel BSSA DFT feature may allow a privileged user to potentially enable an escalation of privilege via local access. |
| Unchecked return value in the firmware for some Intel(R) Processors may allow a privileged user to potentially enable an escalation of privilege via local access. |
| Improper conditions check in Intel BIOS platform sample code for some Intel(R) Processors before may allow a privileged user to potentially enable escalation of privilege via local access. |
| Domain-bypass transient execution vulnerability in some Intel Atom(R) Processors may allow an authenticated user to potentially enable information disclosure via local access. |
| Load value injection in some Intel(R) Processors utilizing speculative execution may allow an authenticated user to potentially enable information disclosure via a side channel with local access. The list of affected products is provided in intel-sa-00334: https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00334.html |
| Insufficient input validation in system firmware for Intel(R) Xeon(R) Scalable Processors, Intel(R) Xeon(R) Processors D Family, Intel(R) Xeon(R) Processors E5 v4 Family, Intel(R) Xeon(R) Processors E7 v4 Family and Intel(R) Atom(R) processor C Series may allow a privileged user to potentially enable escalation of privilege, denial of service and/or information disclosure via local access. |
| Insufficient access control in system firmware for Intel(R) Xeon(R) Scalable Processors, 2nd Generation Intel(R) Xeon(R) Scalable Processors and Intel(R) Xeon(R) Processors D Family may allow a privileged user to potentially enable escalation of privilege, denial of service and/or information disclosure via local access. |
| Systems with microprocessors utilizing speculative execution may allow unauthorized disclosure of information to an attacker with local user access via a side-channel attack on the directional branch predictor, as demonstrated by a pattern history table (PHT), aka BranchScope. |
| Systems with microprocessors utilizing speculative execution and branch prediction may allow unauthorized disclosure of information to an attacker with local user access via a speculative buffer overflow and side-channel analysis. |
| Existing UEFI setting restrictions for DCI (Direct Connect Interface) in 5th and 6th generation Intel Xeon Processor E3 Family, Intel Xeon Scalable processors, and Intel Xeon Processor D Family allows a limited physical presence attacker to potentially access platform secrets via debug interfaces. |
| Systems with microprocessors utilizing speculative execution and that perform speculative reads of system registers may allow unauthorized disclosure of system parameters to an attacker with local user access via a side-channel analysis, aka Rogue System Register Read (RSRE), Variant 3a. |