CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
media: venus: Add a check for packet size after reading from shared memory
Add a check to ensure that the packet size does not exceed the number of
available words after reading the packet header from shared memory. This
ensures that the size provided by the firmware is safe to process and
prevent potential out-of-bounds memory access. |
In the Linux kernel, the following vulnerability has been resolved:
fs/buffer: fix use-after-free when call bh_read() helper
There's issue as follows:
BUG: KASAN: stack-out-of-bounds in end_buffer_read_sync+0xe3/0x110
Read of size 8 at addr ffffc9000168f7f8 by task swapper/3/0
CPU: 3 UID: 0 PID: 0 Comm: swapper/3 Not tainted 6.16.0-862.14.0.6.x86_64
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996)
Call Trace:
<IRQ>
dump_stack_lvl+0x55/0x70
print_address_description.constprop.0+0x2c/0x390
print_report+0xb4/0x270
kasan_report+0xb8/0xf0
end_buffer_read_sync+0xe3/0x110
end_bio_bh_io_sync+0x56/0x80
blk_update_request+0x30a/0x720
scsi_end_request+0x51/0x2b0
scsi_io_completion+0xe3/0x480
? scsi_device_unbusy+0x11e/0x160
blk_complete_reqs+0x7b/0x90
handle_softirqs+0xef/0x370
irq_exit_rcu+0xa5/0xd0
sysvec_apic_timer_interrupt+0x6e/0x90
</IRQ>
Above issue happens when do ntfs3 filesystem mount, issue may happens
as follows:
mount IRQ
ntfs_fill_super
read_cache_page
do_read_cache_folio
filemap_read_folio
mpage_read_folio
do_mpage_readpage
ntfs_get_block_vbo
bh_read
submit_bh
wait_on_buffer(bh);
blk_complete_reqs
scsi_io_completion
scsi_end_request
blk_update_request
end_bio_bh_io_sync
end_buffer_read_sync
__end_buffer_read_notouch
unlock_buffer
wait_on_buffer(bh);--> return will return to caller
put_bh
--> trigger stack-out-of-bounds
In the mpage_read_folio() function, the stack variable 'map_bh' is
passed to ntfs_get_block_vbo(). Once unlock_buffer() unlocks and
wait_on_buffer() returns to continue processing, the stack variable
is likely to be reclaimed. Consequently, during the end_buffer_read_sync()
process, calling put_bh() may result in stack overrun.
If the bh is not allocated on the stack, it belongs to a folio. Freeing
a buffer head which belongs to a folio is done by drop_buffers() which
will fail to free buffers which are still locked. So it is safe to call
put_bh() before __end_buffer_read_notouch(). |
In the Linux kernel, the following vulnerability has been resolved:
media: usbtv: Lock resolution while streaming
When an program is streaming (ffplay) and another program (qv4l2)
changes the TV standard from NTSC to PAL, the kernel crashes due to trying
to copy to unmapped memory.
Changing from NTSC to PAL increases the resolution in the usbtv struct,
but the video plane buffer isn't adjusted, so it overflows.
[hverkuil: call vb2_is_busy instead of vb2_is_streaming] |
In the Linux kernel, the following vulnerability has been resolved:
parisc: Revise __get_user() to probe user read access
Because of the way read access support is implemented, read access
interruptions are only triggered at privilege levels 2 and 3. The
kernel executes at privilege level 0, so __get_user() never triggers
a read access interruption (code 26). Thus, it is currently possible
for user code to access a read protected address via a system call.
Fix this by probing read access rights at privilege level 3 (PRIV_USER)
and setting __gu_err to -EFAULT (-14) if access isn't allowed.
Note the cmpiclr instruction does a 32-bit compare because COND macro
doesn't work inside asm. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: check if hubbub is NULL in debugfs/amdgpu_dm_capabilities
HUBBUB structure is not initialized on DCE hardware, so check if it is NULL
to avoid null dereference while accessing amdgpu_dm_capabilities file in
debugfs. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Flush delayed SKBs while releasing RXE resources
When skb packets are sent out, these skb packets still depends on
the rxe resources, for example, QP, sk, when these packets are
destroyed.
If these rxe resources are released when the skb packets are destroyed,
the call traces will appear.
To avoid skb packets hang too long time in some network devices,
a timestamp is added when these skb packets are created. If these
skb packets hang too long time in network devices, these network
devices can free these skb packets to release rxe resources. |
In the Linux kernel, the following vulnerability has been resolved:
platform/x86/amd/hsmp: Ensure sock->metric_tbl_addr is non-NULL
If metric table address is not allocated, accessing metrics_bin will
result in a NULL pointer dereference, so add a check. |
In the Linux kernel, the following vulnerability has been resolved:
gve: prevent ethtool ops after shutdown
A crash can occur if an ethtool operation is invoked
after shutdown() is called.
shutdown() is invoked during system shutdown to stop DMA operations
without performing expensive deallocations. It is discouraged to
unregister the netdev in this path, so the device may still be visible
to userspace and kernel helpers.
In gve, shutdown() tears down most internal data structures. If an
ethtool operation is dispatched after shutdown(), it will dereference
freed or NULL pointers, leading to a kernel panic. While graceful
shutdown normally quiesces userspace before invoking the reboot
syscall, forced shutdowns (as observed on GCP VMs) can still trigger
this path.
Fix by calling netif_device_detach() in shutdown().
This marks the device as detached so the ethtool ioctl handler
will skip dispatching operations to the driver. |
In the Linux kernel, the following vulnerability has been resolved:
media: iris: Fix NULL pointer dereference
A warning reported by smatch indicated a possible null pointer
dereference where one of the arguments to API
"iris_hfi_gen2_handle_system_error" could sometimes be null.
To fix this, add a check to validate that the argument passed is not
null before accessing its members. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: nf_reject: don't leak dst refcount for loopback packets
recent patches to add a WARN() when replacing skb dst entry found an
old bug:
WARNING: include/linux/skbuff.h:1165 skb_dst_check_unset include/linux/skbuff.h:1164 [inline]
WARNING: include/linux/skbuff.h:1165 skb_dst_set include/linux/skbuff.h:1210 [inline]
WARNING: include/linux/skbuff.h:1165 nf_reject_fill_skb_dst+0x2a4/0x330 net/ipv4/netfilter/nf_reject_ipv4.c:234
[..]
Call Trace:
nf_send_unreach+0x17b/0x6e0 net/ipv4/netfilter/nf_reject_ipv4.c:325
nft_reject_inet_eval+0x4bc/0x690 net/netfilter/nft_reject_inet.c:27
expr_call_ops_eval net/netfilter/nf_tables_core.c:237 [inline]
..
This is because blamed commit forgot about loopback packets.
Such packets already have a dst_entry attached, even at PRE_ROUTING stage.
Instead of checking hook just check if the skb already has a route
attached to it. |
In the Linux kernel, the following vulnerability has been resolved:
s390/mm: Do not map lowcore with identity mapping
Since the identity mapping is pinned to address zero the lowcore is always
also mapped to address zero, this happens regardless of the relocate_lowcore
command line option. If the option is specified the lowcore is mapped
twice, instead of only once.
This means that NULL pointer accesses will succeed instead of causing an
exception (low address protection still applies, but covers only parts).
To fix this never map the first two pages of physical memory with the
identity mapping. |
In the Linux kernel, the following vulnerability has been resolved:
netfs: Fix unbuffered write error handling
If all the subrequests in an unbuffered write stream fail, the subrequest
collector doesn't update the stream->transferred value and it retains its
initial LONG_MAX value. Unfortunately, if all active streams fail, then we
take the smallest value of { LONG_MAX, LONG_MAX, ... } as the value to set
in wreq->transferred - which is then returned from ->write_iter().
LONG_MAX was chosen as the initial value so that all the streams can be
quickly assessed by taking the smallest value of all stream->transferred -
but this only works if we've set any of them.
Fix this by adding a flag to indicate whether the value in
stream->transferred is valid and checking that when we integrate the
values. stream->transferred can then be initialised to zero.
This was found by running the generic/750 xfstest against cifs with
cache=none. It splices data to the target file. Once (if) it has used up
all the available scratch space, the writes start failing with ENOSPC.
This causes ->write_iter() to fail. However, it was returning
wreq->transferred, i.e. LONG_MAX, rather than an error (because it thought
the amount transferred was non-zero) and iter_file_splice_write() would
then try to clean up that amount of pipe bufferage - leading to an oops
when it overran. The kernel log showed:
CIFS: VFS: Send error in write = -28
followed by:
BUG: kernel NULL pointer dereference, address: 0000000000000008
with:
RIP: 0010:iter_file_splice_write+0x3a4/0x520
do_splice+0x197/0x4e0
or:
RIP: 0010:pipe_buf_release (include/linux/pipe_fs_i.h:282)
iter_file_splice_write (fs/splice.c:755)
Also put a warning check into splice to announce if ->write_iter() returned
that it had written more than it was asked to. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: qla4xxx: Prevent a potential error pointer dereference
The qla4xxx_get_ep_fwdb() function is supposed to return NULL on error,
but qla4xxx_ep_connect() returns error pointers. Propagating the error
pointers will lead to an Oops in the caller, so change the error pointers
to NULL. |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix vm_bind_ioctl double free bug
If the argument check during an array bind fails, the bind_ops are freed
twice as seen below. Fix this by setting bind_ops to NULL after freeing.
==================================================================
BUG: KASAN: double-free in xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
Free of addr ffff88813bb9b800 by task xe_vm/14198
CPU: 5 UID: 0 PID: 14198 Comm: xe_vm Not tainted 6.16.0-xe-eudebug-cmanszew+ #520 PREEMPT(full)
Hardware name: Intel Corporation Alder Lake Client Platform/AlderLake-P DDR5 RVP, BIOS ADLPFWI1.R00.2411.A02.2110081023 10/08/2021
Call Trace:
<TASK>
dump_stack_lvl+0x82/0xd0
print_report+0xcb/0x610
? __virt_addr_valid+0x19a/0x300
? xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
kasan_report_invalid_free+0xc8/0xf0
? xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
? xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
check_slab_allocation+0x102/0x130
kfree+0x10d/0x440
? should_fail_ex+0x57/0x2f0
? xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
xe_vm_bind_ioctl+0x1b2/0x21f0 [xe]
? __pfx_xe_vm_bind_ioctl+0x10/0x10 [xe]
? __lock_acquire+0xab9/0x27f0
? lock_acquire+0x165/0x300
? drm_dev_enter+0x53/0xe0 [drm]
? find_held_lock+0x2b/0x80
? drm_dev_exit+0x30/0x50 [drm]
? drm_ioctl_kernel+0x128/0x1c0 [drm]
drm_ioctl_kernel+0x128/0x1c0 [drm]
? __pfx_xe_vm_bind_ioctl+0x10/0x10 [xe]
? find_held_lock+0x2b/0x80
? __pfx_drm_ioctl_kernel+0x10/0x10 [drm]
? should_fail_ex+0x57/0x2f0
? __pfx_xe_vm_bind_ioctl+0x10/0x10 [xe]
drm_ioctl+0x352/0x620 [drm]
? __pfx_drm_ioctl+0x10/0x10 [drm]
? __pfx_rpm_resume+0x10/0x10
? do_raw_spin_lock+0x11a/0x1b0
? find_held_lock+0x2b/0x80
? __pm_runtime_resume+0x61/0xc0
? rcu_is_watching+0x20/0x50
? trace_irq_enable.constprop.0+0xac/0xe0
xe_drm_ioctl+0x91/0xc0 [xe]
__x64_sys_ioctl+0xb2/0x100
? rcu_is_watching+0x20/0x50
do_syscall_64+0x68/0x2e0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7fa9acb24ded
(cherry picked from commit a01b704527c28a2fd43a17a85f8996b75ec8492a) |
In the Linux kernel, the following vulnerability has been resolved:
i2c: rtl9300: Fix out-of-bounds bug in rtl9300_i2c_smbus_xfer
The data->block[0] variable comes from user. Without proper check,
the variable may be very large to cause an out-of-bounds bug.
Fix this bug by checking the value of data->block[0] first.
1. commit 39244cc75482 ("i2c: ismt: Fix an out-of-bounds bug in
ismt_access()")
2. commit 92fbb6d1296f ("i2c: xgene-slimpro: Fix out-of-bounds bug in
xgene_slimpro_i2c_xfer()") |
In the Linux kernel, the following vulnerability has been resolved:
mm/damon/ops-common: ignore migration request to invalid nodes
damon_migrate_pages() tries migration even if the target node is invalid.
If users mistakenly make such invalid requests via
DAMOS_MIGRATE_{HOT,COLD} action, the below kernel BUG can happen.
[ 7831.883495] BUG: unable to handle page fault for address: 0000000000001f48
[ 7831.884160] #PF: supervisor read access in kernel mode
[ 7831.884681] #PF: error_code(0x0000) - not-present page
[ 7831.885203] PGD 0 P4D 0
[ 7831.885468] Oops: Oops: 0000 [#1] SMP PTI
[ 7831.885852] CPU: 31 UID: 0 PID: 94202 Comm: kdamond.0 Not tainted 6.16.0-rc5-mm-new-damon+ #93 PREEMPT(voluntary)
[ 7831.886913] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-4.el9 04/01/2014
[ 7831.887777] RIP: 0010:__alloc_frozen_pages_noprof (include/linux/mmzone.h:1724 include/linux/mmzone.h:1750 mm/page_alloc.c:4936 mm/page_alloc.c:5137)
[...]
[ 7831.895953] Call Trace:
[ 7831.896195] <TASK>
[ 7831.896397] __folio_alloc_noprof (mm/page_alloc.c:5183 mm/page_alloc.c:5192)
[ 7831.896787] migrate_pages_batch (mm/migrate.c:1189 mm/migrate.c:1851)
[ 7831.897228] ? __pfx_alloc_migration_target (mm/migrate.c:2137)
[ 7831.897735] migrate_pages (mm/migrate.c:2078)
[ 7831.898141] ? __pfx_alloc_migration_target (mm/migrate.c:2137)
[ 7831.898664] damon_migrate_folio_list (mm/damon/ops-common.c:321 mm/damon/ops-common.c:354)
[ 7831.899140] damon_migrate_pages (mm/damon/ops-common.c:405)
[...]
Add a target node validity check in damon_migrate_pages(). The validity
check is stolen from that of do_pages_move(), which is being used for the
move_pages() system call. |
In the Linux kernel, the following vulnerability has been resolved:
s390/ism: fix concurrency management in ism_cmd()
The s390x ISM device data sheet clearly states that only one
request-response sequence is allowable per ISM function at any point in
time. Unfortunately as of today the s390/ism driver in Linux does not
honor that requirement. This patch aims to rectify that.
This problem was discovered based on Aliaksei's bug report which states
that for certain workloads the ISM functions end up entering error state
(with PEC 2 as seen from the logs) after a while and as a consequence
connections handled by the respective function break, and for future
connection requests the ISM device is not considered -- given it is in a
dysfunctional state. During further debugging PEC 3A was observed as
well.
A kernel message like
[ 1211.244319] zpci: 061a:00:00.0: Event 0x2 reports an error for PCI function 0x61a
is a reliable indicator of the stated function entering error state
with PEC 2. Let me also point out that a kernel message like
[ 1211.244325] zpci: 061a:00:00.0: The ism driver bound to the device does not support error recovery
is a reliable indicator that the ISM function won't be auto-recovered
because the ISM driver currently lacks support for it.
On a technical level, without this synchronization, commands (inputs to
the FW) may be partially or fully overwritten (corrupted) by another CPU
trying to issue commands on the same function. There is hard evidence that
this can lead to DMB token values being used as DMB IOVAs, leading to
PEC 2 PCI events indicating invalid DMA. But this is only one of the
failure modes imaginable. In theory even completely losing one command
and executing another one twice and then trying to interpret the outputs
as if the command we intended to execute was actually executed and not
the other one is also possible. Frankly, I don't feel confident about
providing an exhaustive list of possible consequences. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: ufs: ufs-qcom: Fix ESI null pointer dereference
ESI/MSI is a performance optimization feature that provides dedicated
interrupts per MCQ hardware queue. This is optional feature and UFS MCQ
should work with and without ESI feature.
Commit e46a28cea29a ("scsi: ufs: qcom: Remove the MSI descriptor abuse")
brings a regression in ESI (Enhanced System Interrupt) configuration that
causes a null pointer dereference when Platform MSI allocation fails.
The issue occurs in when platform_device_msi_init_and_alloc_irqs() in
ufs_qcom_config_esi() fails (returns -EINVAL) but the current code uses
__free() macro for automatic cleanup free MSI resources that were never
successfully allocated.
Unable to handle kernel NULL pointer dereference at virtual
address 0000000000000008
Call trace:
mutex_lock+0xc/0x54 (P)
platform_device_msi_free_irqs_all+0x1c/0x40
ufs_qcom_config_esi+0x1d0/0x220 [ufs_qcom]
ufshcd_config_mcq+0x28/0x104
ufshcd_init+0xa3c/0xf40
ufshcd_pltfrm_init+0x504/0x7d4
ufs_qcom_probe+0x20/0x58 [ufs_qcom]
Fix by restructuring the ESI configuration to try MSI allocation first,
before any other resource allocation and instead use explicit cleanup
instead of __free() macro to avoid cleanup of unallocated resources.
Tested on SM8750 platform with MCQ enabled, both with and without
Platform ESI support. |
In the Linux kernel, the following vulnerability has been resolved:
comedi: Fix use of uninitialized memory in do_insn_ioctl() and do_insnlist_ioctl()
syzbot reports a KMSAN kernel-infoleak in `do_insn_ioctl()`. A kernel
buffer is allocated to hold `insn->n` samples (each of which is an
`unsigned int`). For some instruction types, `insn->n` samples are
copied back to user-space, unless an error code is being returned. The
problem is that not all the instruction handlers that need to return
data to userspace fill in the whole `insn->n` samples, so that there is
an information leak. There is a similar syzbot report for
`do_insnlist_ioctl()`, although it does not have a reproducer for it at
the time of writing.
One culprit is `insn_rw_emulate_bits()` which is used as the handler for
`INSN_READ` or `INSN_WRITE` instructions for subdevices that do not have
a specific handler for that instruction, but do have an `INSN_BITS`
handler. For `INSN_READ` it only fills in at most 1 sample, so if
`insn->n` is greater than 1, the remaining `insn->n - 1` samples copied
to userspace will be uninitialized kernel data.
Another culprit is `vm80xx_ai_insn_read()` in the "vm80xx" driver. It
never returns an error, even if it fails to fill the buffer.
Fix it in `do_insn_ioctl()` and `do_insnlist_ioctl()` by making sure
that uninitialized parts of the allocated buffer are zeroed before
handling each instruction.
Thanks to Arnaud Lecomte for their fix to `do_insn_ioctl()`. That fix
replaced the call to `kmalloc_array()` with `kcalloc()`, but it is not
always necessary to clear the whole buffer. |
In the Linux kernel, the following vulnerability has been resolved:
parisc: Revise gateway LWS calls to probe user read access
We use load and stbys,e instructions to trigger memory reference
interruptions without writing to memory. Because of the way read
access support is implemented, read access interruptions are only
triggered at privilege levels 2 and 3. The kernel and gateway
page execute at privilege level 0, so this code never triggers
a read access interruption. Thus, it is currently possible for
user code to execute a LWS compare and swap operation at an
address that is read protected at privilege level 3 (PRIV_USER).
Fix this by probing read access rights at privilege level 3 and
branching to lws_fault if access isn't allowed. |