| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The function PEM_read_bio_ex() reads a PEM file from a BIO and parses and
decodes the "name" (e.g. "CERTIFICATE"), any header data and the payload data.
If the function succeeds then the "name_out", "header" and "data" arguments are
populated with pointers to buffers containing the relevant decoded data. The
caller is responsible for freeing those buffers. It is possible to construct a
PEM file that results in 0 bytes of payload data. In this case PEM_read_bio_ex()
will return a failure code but will populate the header argument with a pointer
to a buffer that has already been freed. If the caller also frees this buffer
then a double free will occur. This will most likely lead to a crash. This
could be exploited by an attacker who has the ability to supply malicious PEM
files for parsing to achieve a denial of service attack.
The functions PEM_read_bio() and PEM_read() are simple wrappers around
PEM_read_bio_ex() and therefore these functions are also directly affected.
These functions are also called indirectly by a number of other OpenSSL
functions including PEM_X509_INFO_read_bio_ex() and
SSL_CTX_use_serverinfo_file() which are also vulnerable. Some OpenSSL internal
uses of these functions are not vulnerable because the caller does not free the
header argument if PEM_read_bio_ex() returns a failure code. These locations
include the PEM_read_bio_TYPE() functions as well as the decoders introduced in
OpenSSL 3.0.
The OpenSSL asn1parse command line application is also impacted by this issue. |
| A timing based side channel exists in the OpenSSL RSA Decryption implementation
which could be sufficient to recover a plaintext across a network in a
Bleichenbacher style attack. To achieve a successful decryption an attacker
would have to be able to send a very large number of trial messages for
decryption. The vulnerability affects all RSA padding modes: PKCS#1 v1.5,
RSA-OEAP and RSASVE.
For example, in a TLS connection, RSA is commonly used by a client to send an
encrypted pre-master secret to the server. An attacker that had observed a
genuine connection between a client and a server could use this flaw to send
trial messages to the server and record the time taken to process them. After a
sufficiently large number of messages the attacker could recover the pre-master
secret used for the original connection and thus be able to decrypt the
application data sent over that connection. |
| When a HTTP/2 stream was reset (RST frame) by a client, there was a time window were the request's memory resources were not reclaimed immediately. Instead, de-allocation was deferred to connection close. A client could send new requests and resets, keeping the connection busy and open and causing the memory footprint to keep on growing. On connection close, all resources were reclaimed, but the process might run out of memory before that.
This was found by the reporter during testing of CVE-2023-44487 (HTTP/2 Rapid Reset Exploit) with their own test client. During "normal" HTTP/2 use, the probability to hit this bug is very low. The kept memory would not become noticeable before the connection closes or times out.
Users are recommended to upgrade to version 2.4.58, which fixes the issue. |
| zlib before 1.2.12 allows memory corruption when deflating (i.e., when compressing) if the input has many distant matches. |
| The c_rehash script does not properly sanitise shell metacharacters to prevent command injection. This script is distributed by some operating systems in a manner where it is automatically executed. On such operating systems, an attacker could execute arbitrary commands with the privileges of the script. Use of the c_rehash script is considered obsolete and should be replaced by the OpenSSL rehash command line tool. Fixed in OpenSSL 3.0.3 (Affected 3.0.0,3.0.1,3.0.2). Fixed in OpenSSL 1.1.1o (Affected 1.1.1-1.1.1n). Fixed in OpenSSL 1.0.2ze (Affected 1.0.2-1.0.2zd). |
| Out-of-bounds Read vulnerability in mod_macro of Apache HTTP Server.This issue affects Apache HTTP Server: through 2.4.57. |
| When an application tells libcurl it wants to allow HTTP/2 server push, and the amount of received headers for the push surpasses the maximum allowed limit (1000), libcurl aborts the server push. When aborting, libcurl inadvertently does not free all the previously allocated headers and instead leaks the memory. Further, this error condition fails silently and is therefore not easily detected by an application. |
| libcurl did not check the server certificate of TLS connections done to a host specified as an IP address, when built to use mbedTLS. libcurl would wrongly avoid using the set hostname function when the specified hostname was given as an IP address, therefore completely skipping the certificate check. This affects all uses of TLS protocols (HTTPS, FTPS, IMAPS, POPS3, SMTPS, etc). |
| When a protocol selection parameter option disables all protocols without adding any then the default set of protocols would remain in the allowed set due to an error in the logic for removing protocols. The below command would perform a request to curl.se with a plaintext protocol which has been explicitly disabled. curl --proto -all,-http http://curl.se The flaw is only present if the set of selected protocols disables the entire set of available protocols, in itself a command with no practical use and therefore unlikely to be encountered in real situations. The curl security team has thus assessed this to be low severity bug. |
| libcurl skips the certificate verification for a QUIC connection under certain conditions, when built to use wolfSSL. If told to use an unknown/bad cipher or curve, the error path accidentally skips the verification and returns OK, thus ignoring any certificate problems. |
| Serving WebSocket protocol upgrades over a HTTP/2 connection could result in a Null Pointer dereference, leading to a crash of the server process, degrading performance. |
| Incorrect Default Permissions vulnerability in Apache Tomcat Connectors allows local users to view and modify shared memory containing mod_jk configuration which may lead to information disclosure and/or denial of service.
This issue affects Apache Tomcat Connectors: from 1.2.9-beta through 1.2.49. Only mod_jk on Unix like systems is affected. Neither the ISAPI redirector nor mod_jk on Windows is affected.
Users are recommended to upgrade to version 1.2.50, which fixes the issue. |
| In ModSecurity before 2.9.6 and 3.x before 3.0.8, HTTP multipart requests were incorrectly parsed and could bypass the Web Application Firewall. NOTE: this is related to CVE-2022-39956 but can be considered independent changes to the ModSecurity (C language) codebase. |
| Potential SSRF in mod_rewrite in Apache HTTP Server 2.4.59 and earlier allows an attacker to cause unsafe RewriteRules to unexpectedly setup URL's to be handled by mod_proxy.
Users are recommended to upgrade to version 2.4.60, which fixes this issue. |
| Encoding problem in mod_proxy in Apache HTTP Server 2.4.59 and earlier allows request URLs with incorrect encoding to be sent to backend services, potentially bypassing authentication via crafted requests.
Users are recommended to upgrade to version 2.4.60, which fixes this issue. |
| SSRF in Apache HTTP Server on Windows allows to potentially leak NTLM hashes to a malicious server via SSRF and malicious requests or content
Users are recommended to upgrade to version 2.4.60 which fixes this issue. Note: Existing configurations that access UNC paths will have to configure new directive "UNCList" to allow access during request processing. |
| This flaw allows a malicious HTTP server to set "super cookies" in curl that
are then passed back to more origins than what is otherwise allowed or
possible. This allows a site to set cookies that then would get sent to
different and unrelated sites and domains.
It could do this by exploiting a mixed case flaw in curl's function that
verifies a given cookie domain against the Public Suffix List (PSL). For
example a cookie could be set with `domain=co.UK` when the URL used a lower
case hostname `curl.co.uk`, even though `co.uk` is listed as a PSL domain. |
| Faulty input validation in the core of Apache allows malicious or exploitable backend/content generators to split HTTP responses.
This issue affects Apache HTTP Server: through 2.4.58. |
| nghttp2 version >= 1.10.0 and nghttp2 <= v1.31.0 contains an Improper Input Validation CWE-20 vulnerability in ALTSVC frame handling that can result in segmentation fault leading to denial of service. This attack appears to be exploitable via network client. This vulnerability appears to have been fixed in >= 1.31.1. |
| In nghttp2 before version 1.41.0, the overly large HTTP/2 SETTINGS frame payload causes denial of service. The proof of concept attack involves a malicious client constructing a SETTINGS frame with a length of 14,400 bytes (2400 individual settings entries) over and over again. The attack causes the CPU to spike at 100%. nghttp2 v1.41.0 fixes this vulnerability. There is a workaround to this vulnerability. Implement nghttp2_on_frame_recv_callback callback, and if received frame is SETTINGS frame and the number of settings entries are large (e.g., > 32), then drop the connection. |