CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
thermal/debugfs: Free all thermal zone debug memory on zone removal
Because thermal_debug_tz_remove() does not free all memory allocated for
thermal zone diagnostics, some of that memory becomes unreachable after
freeing the thermal zone's struct thermal_debugfs object.
Address this by making thermal_debug_tz_remove() free all of the memory
in question.
Cc :6.8+ <stable@vger.kernel.org> # 6.8+ |
An authenticated command injection vulnerability exists in Pi-hole versions up to 3.3. When adding a domain to the allowlist via the web interface, the domain parameter is not properly sanitized, allowing an attacker to append OS commands to the domain string. These commands are executed on the underlying operating system with the privileges of the Pi-hole service user.
This behavior was present in the legacy AdminLTE interface and has since been patched in later versions. |
In the Linux kernel, the following vulnerability has been resolved:
NFSD: Fix nfsd4_encode_fattr4() crasher
Ensure that args.acl is initialized early. It is used in an
unconditional call to kfree() on the way out of
nfsd4_encode_fattr4(). |
In the Linux kernel, the following vulnerability has been resolved:
ipvlan: Dont Use skb->sk in ipvlan_process_v{4,6}_outbound
Raw packet from PF_PACKET socket ontop of an IPv6-backed ipvlan device will
hit WARN_ON_ONCE() in sk_mc_loop() through sch_direct_xmit() path.
WARNING: CPU: 2 PID: 0 at net/core/sock.c:775 sk_mc_loop+0x2d/0x70
Modules linked in: sch_netem ipvlan rfkill cirrus drm_shmem_helper sg drm_kms_helper
CPU: 2 PID: 0 Comm: swapper/2 Kdump: loaded Not tainted 6.9.0+ #279
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014
RIP: 0010:sk_mc_loop+0x2d/0x70
Code: fa 0f 1f 44 00 00 65 0f b7 15 f7 96 a3 4f 31 c0 66 85 d2 75 26 48 85 ff 74 1c
RSP: 0018:ffffa9584015cd78 EFLAGS: 00010212
RAX: 0000000000000011 RBX: ffff91e585793e00 RCX: 0000000002c6a001
RDX: 0000000000000000 RSI: 0000000000000040 RDI: ffff91e589c0f000
RBP: ffff91e5855bd100 R08: 0000000000000000 R09: 3d00545216f43d00
R10: ffff91e584fdcc50 R11: 00000060dd8616f4 R12: ffff91e58132d000
R13: ffff91e584fdcc68 R14: ffff91e5869ce800 R15: ffff91e589c0f000
FS: 0000000000000000(0000) GS:ffff91e898100000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f788f7c44c0 CR3: 0000000008e1a000 CR4: 00000000000006f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<IRQ>
? __warn (kernel/panic.c:693)
? sk_mc_loop (net/core/sock.c:760)
? report_bug (lib/bug.c:201 lib/bug.c:219)
? handle_bug (arch/x86/kernel/traps.c:239)
? exc_invalid_op (arch/x86/kernel/traps.c:260 (discriminator 1))
? asm_exc_invalid_op (./arch/x86/include/asm/idtentry.h:621)
? sk_mc_loop (net/core/sock.c:760)
ip6_finish_output2 (net/ipv6/ip6_output.c:83 (discriminator 1))
? nf_hook_slow (net/netfilter/core.c:626)
ip6_finish_output (net/ipv6/ip6_output.c:222)
? __pfx_ip6_finish_output (net/ipv6/ip6_output.c:215)
ipvlan_xmit_mode_l3 (drivers/net/ipvlan/ipvlan_core.c:602) ipvlan
ipvlan_start_xmit (drivers/net/ipvlan/ipvlan_main.c:226) ipvlan
dev_hard_start_xmit (net/core/dev.c:3594)
sch_direct_xmit (net/sched/sch_generic.c:343)
__qdisc_run (net/sched/sch_generic.c:416)
net_tx_action (net/core/dev.c:5286)
handle_softirqs (kernel/softirq.c:555)
__irq_exit_rcu (kernel/softirq.c:589)
sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1043)
The warning triggers as this:
packet_sendmsg
packet_snd //skb->sk is packet sk
__dev_queue_xmit
__dev_xmit_skb //q->enqueue is not NULL
__qdisc_run
sch_direct_xmit
dev_hard_start_xmit
ipvlan_start_xmit
ipvlan_xmit_mode_l3 //l3 mode
ipvlan_process_outbound //vepa flag
ipvlan_process_v6_outbound
ip6_local_out
__ip6_finish_output
ip6_finish_output2 //multicast packet
sk_mc_loop //sk->sk_family is AF_PACKET
Call ip{6}_local_out() with NULL sk in ipvlan as other tunnels to fix this. |
In the Linux kernel, the following vulnerability has been resolved:
fs/proc/task_mmu: fix loss of young/dirty bits during pagemap scan
make_uffd_wp_pte() was previously doing:
pte = ptep_get(ptep);
ptep_modify_prot_start(ptep);
pte = pte_mkuffd_wp(pte);
ptep_modify_prot_commit(ptep, pte);
But if another thread accessed or dirtied the pte between the first 2
calls, this could lead to loss of that information. Since
ptep_modify_prot_start() gets and clears atomically, the following is the
correct pattern and prevents any possible race. Any access after the
first call would see an invalid pte and cause a fault:
pte = ptep_modify_prot_start(ptep);
pte = pte_mkuffd_wp(pte);
ptep_modify_prot_commit(ptep, pte); |
Cross-Site Request Forgery (CSRF) vulnerability in straightvisions GmbH SV Proven Expert allows Cross Site Request Forgery. This issue affects SV Proven Expert: from n/a through 2.0.06. |
Cross-Site Request Forgery (CSRF) vulnerability in pebas CouponXxL allows Privilege Escalation. This issue affects CouponXxL: from n/a through 4.5.0. |
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in Search Atlas Search Atlas SEO allows Stored XSS. This issue affects Search Atlas SEO: from n/a through 2.5.4. |
Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting') vulnerability in Jeroen Schmit Theater for WordPress allows Stored XSS. This issue affects Theater for WordPress: from n/a through 0.18.8. |
In the Linux kernel, the following vulnerability has been resolved:
net: relax socket state check at accept time.
Christoph reported the following splat:
WARNING: CPU: 1 PID: 772 at net/ipv4/af_inet.c:761 __inet_accept+0x1f4/0x4a0
Modules linked in:
CPU: 1 PID: 772 Comm: syz-executor510 Not tainted 6.9.0-rc7-g7da7119fe22b #56
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014
RIP: 0010:__inet_accept+0x1f4/0x4a0 net/ipv4/af_inet.c:759
Code: 04 38 84 c0 0f 85 87 00 00 00 41 c7 04 24 03 00 00 00 48 83 c4 10 5b 41 5c 41 5d 41 5e 41 5f 5d c3 cc cc cc cc e8 ec b7 da fd <0f> 0b e9 7f fe ff ff e8 e0 b7 da fd 0f 0b e9 fe fe ff ff 89 d9 80
RSP: 0018:ffffc90000c2fc58 EFLAGS: 00010293
RAX: ffffffff836bdd14 RBX: 0000000000000000 RCX: ffff888104668000
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000000
RBP: dffffc0000000000 R08: ffffffff836bdb89 R09: fffff52000185f64
R10: dffffc0000000000 R11: fffff52000185f64 R12: dffffc0000000000
R13: 1ffff92000185f98 R14: ffff88810754d880 R15: ffff8881007b7800
FS: 000000001c772880(0000) GS:ffff88811b280000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fb9fcf2e178 CR3: 00000001045d2002 CR4: 0000000000770ef0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
inet_accept+0x138/0x1d0 net/ipv4/af_inet.c:786
do_accept+0x435/0x620 net/socket.c:1929
__sys_accept4_file net/socket.c:1969 [inline]
__sys_accept4+0x9b/0x110 net/socket.c:1999
__do_sys_accept net/socket.c:2016 [inline]
__se_sys_accept net/socket.c:2013 [inline]
__x64_sys_accept+0x7d/0x90 net/socket.c:2013
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0x58/0x100 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x4315f9
Code: fd ff 48 81 c4 80 00 00 00 e9 f1 fe ff ff 0f 1f 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 ab b4 fd ff c3 66 2e 0f 1f 84 00 00 00 00
RSP: 002b:00007ffdb26d9c78 EFLAGS: 00000246 ORIG_RAX: 000000000000002b
RAX: ffffffffffffffda RBX: 0000000000400300 RCX: 00000000004315f9
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000004
RBP: 00000000006e1018 R08: 0000000000400300 R09: 0000000000400300
R10: 0000000000400300 R11: 0000000000000246 R12: 0000000000000000
R13: 000000000040cdf0 R14: 000000000040ce80 R15: 0000000000000055
</TASK>
The reproducer invokes shutdown() before entering the listener status.
After commit 94062790aedb ("tcp: defer shutdown(SEND_SHUTDOWN) for
TCP_SYN_RECV sockets"), the above causes the child to reach the accept
syscall in FIN_WAIT1 status.
Eric noted we can relax the existing assertion in __inet_accept() |
In the Linux kernel, the following vulnerability has been resolved:
net/sched: taprio: extend minimum interval restriction to entire cycle too
It is possible for syzbot to side-step the restriction imposed by the
blamed commit in the Fixes: tag, because the taprio UAPI permits a
cycle-time different from (and potentially shorter than) the sum of
entry intervals.
We need one more restriction, which is that the cycle time itself must
be larger than N * ETH_ZLEN bit times, where N is the number of schedule
entries. This restriction needs to apply regardless of whether the cycle
time came from the user or was the implicit, auto-calculated value, so
we move the existing "cycle == 0" check outside the "if "(!new->cycle_time)"
branch. This way covers both conditions and scenarios.
Add a selftest which illustrates the issue triggered by syzbot. |
A flaw was found in the cookie date handling logic of the libsoup HTTP library, widely used by GNOME and other applications for web communication. When processing cookies with specially crafted expiration dates, the library may perform an out-of-bounds memory read. This flaw could result in unintended disclosure of memory contents, potentially exposing sensitive information from the process using libsoup. |
A vulnerability was found in Cockpit up to 2.11.3. It has been rated as problematic. This issue affects some unknown processing of the file /system/users/save. The manipulation of the argument name/email leads to cross site scripting. The attack may be initiated remotely. Upgrading to version 2.11.4 is able to address this issue. The patch is named bdcd5e3bc651c0839c7eea807f3eb6af856dbc76. It is recommended to upgrade the affected component. The vendor was contacted early about this disclosure and acted very professional. A patch and new release was made available very quickly. |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: don't allow unaligned truncation on released compress inode
f2fs image may be corrupted after below testcase:
- mkfs.f2fs -O extra_attr,compression -f /dev/vdb
- mount /dev/vdb /mnt/f2fs
- touch /mnt/f2fs/file
- f2fs_io setflags compression /mnt/f2fs/file
- dd if=/dev/zero of=/mnt/f2fs/file bs=4k count=4
- f2fs_io release_cblocks /mnt/f2fs/file
- truncate -s 8192 /mnt/f2fs/file
- umount /mnt/f2fs
- fsck.f2fs /dev/vdb
[ASSERT] (fsck_chk_inode_blk:1256) --> ino: 0x5 has i_blocks: 0x00000002, but has 0x3 blocks
[FSCK] valid_block_count matching with CP [Fail] [0x4, 0x5]
[FSCK] other corrupted bugs [Fail]
The reason is: partial truncation assume compressed inode has reserved
blocks, after partial truncation, valid block count may change w/o
.i_blocks and .total_valid_block_count update, result in corruption.
This patch only allow cluster size aligned truncation on released
compress inode for fixing. |
Stored cross-site scripting vulnerability in M-Files Hubshare before version 25.8 allows authenticated attackers to cause script execution for other users. |
In the Linux kernel, the following vulnerability has been resolved:
scsi: mpi3mr: Avoid memcpy field-spanning write WARNING
When the "storcli2 show" command is executed for eHBA-9600, mpi3mr driver
prints this WARNING message:
memcpy: detected field-spanning write (size 128) of single field "bsg_reply_buf->reply_buf" at drivers/scsi/mpi3mr/mpi3mr_app.c:1658 (size 1)
WARNING: CPU: 0 PID: 12760 at drivers/scsi/mpi3mr/mpi3mr_app.c:1658 mpi3mr_bsg_request+0x6b12/0x7f10 [mpi3mr]
The cause of the WARN is 128 bytes memcpy to the 1 byte size array "__u8
replay_buf[1]" in the struct mpi3mr_bsg_in_reply_buf. The array is intended
to be a flexible length array, so the WARN is a false positive.
To suppress the WARN, remove the constant number '1' from the array
declaration and clarify that it has flexible length. Also, adjust the
memory allocation size to match the change. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: iwlwifi: read txq->read_ptr under lock
If we read txq->read_ptr without lock, we can read the same
value twice, then obtain the lock, and reclaim from there
to two different places, but crucially reclaim the same
entry twice, resulting in the WARN_ONCE() a little later.
Fix that by reading txq->read_ptr under lock. |
A vulnerability in the Simple Network Management Protocol (SNMP) subsystem of Cisco IOS Software and Cisco IOS XE Software could allow the following:
An authenticated, remote attacker with low privileges could cause a denial of service (DoS) condition on an affected device that is running Cisco IOS Software or Cisco IOS XE Software. To cause the DoS, the attacker must have the SNMPv2c or earlier read-only community string or valid SNMPv3 user credentials.
An authenticated, remote attacker with high privileges could execute code as the root user on an affected device that is running Cisco IOS XE Software. To execute code as the root user, the attacker must have the SNMPv1 or v2c read-only community string or valid SNMPv3 user credentials and administrative or privilege 15 credentials on the affected device.
An attacker could exploit this vulnerability by sending a crafted SNMP packet to an affected device over IPv4 or IPv6 networks.
This vulnerability is due to a stack overflow condition in the SNMP subsystem of the affected software. A successful exploit could allow a low-privileged attacker to cause the affected system to reload, resulting in a DoS condition, or allow a high-privileged attacker to execute arbitrary code as the root user and obtain full control of the affected system.
Note: This vulnerability affects all versions of SNMP. |
Whale browser for iOS before 3.9.1.4206 allow an attacker to execute malicious scripts in the browser via a crafted javascript scheme. |
Whale browser before 4.32.315.22 allow an attacker to bypass the Same-Origin Policy in a dual-tab environment. |