Search

Search Results (331448 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2026-23101 1 Linux 1 Linux Kernel 2026-02-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: leds: led-class: Only Add LED to leds_list when it is fully ready Before this change the LED was added to leds_list before led_init_core() gets called adding it the list before led_classdev.set_brightness_work gets initialized. This leaves a window where led_trigger_register() of a LED's default trigger will call led_trigger_set() which calls led_set_brightness() which in turn will end up queueing the *uninitialized* led_classdev.set_brightness_work. This race gets hit by the lenovo-thinkpad-t14s EC driver which registers 2 LEDs with a default trigger provided by snd_ctl_led.ko in quick succession. The first led_classdev_register() causes an async modprobe of snd_ctl_led to run and that async modprobe manages to exactly hit the window where the second LED is on the leds_list without led_init_core() being called for it, resulting in: ------------[ cut here ]------------ WARNING: CPU: 11 PID: 5608 at kernel/workqueue.c:4234 __flush_work+0x344/0x390 Hardware name: LENOVO 21N2S01F0B/21N2S01F0B, BIOS N42ET93W (2.23 ) 09/01/2025 ... Call trace: __flush_work+0x344/0x390 (P) flush_work+0x2c/0x50 led_trigger_set+0x1c8/0x340 led_trigger_register+0x17c/0x1c0 led_trigger_register_simple+0x84/0xe8 snd_ctl_led_init+0x40/0xf88 [snd_ctl_led] do_one_initcall+0x5c/0x318 do_init_module+0x9c/0x2b8 load_module+0x7e0/0x998 Close the race window by moving the adding of the LED to leds_list to after the led_init_core() call.
CVE-2026-23099 1 Linux 1 Linux Kernel 2026-02-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: bonding: limit BOND_MODE_8023AD to Ethernet devices BOND_MODE_8023AD makes sense for ARPHRD_ETHER only. syzbot reported: BUG: KASAN: global-out-of-bounds in __hw_addr_create net/core/dev_addr_lists.c:63 [inline] BUG: KASAN: global-out-of-bounds in __hw_addr_add_ex+0x25d/0x760 net/core/dev_addr_lists.c:118 Read of size 16 at addr ffffffff8bf94040 by task syz.1.3580/19497 CPU: 1 UID: 0 PID: 19497 Comm: syz.1.3580 Tainted: G L syzkaller #0 PREEMPT(full) Tainted: [L]=SOFTLOCKUP Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 Call Trace: <TASK> dump_stack_lvl+0xe8/0x150 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0xca/0x240 mm/kasan/report.c:482 kasan_report+0x118/0x150 mm/kasan/report.c:595 check_region_inline mm/kasan/generic.c:-1 [inline] kasan_check_range+0x2b0/0x2c0 mm/kasan/generic.c:200 __asan_memcpy+0x29/0x70 mm/kasan/shadow.c:105 __hw_addr_create net/core/dev_addr_lists.c:63 [inline] __hw_addr_add_ex+0x25d/0x760 net/core/dev_addr_lists.c:118 __dev_mc_add net/core/dev_addr_lists.c:868 [inline] dev_mc_add+0xa1/0x120 net/core/dev_addr_lists.c:886 bond_enslave+0x2b8b/0x3ac0 drivers/net/bonding/bond_main.c:2180 do_set_master+0x533/0x6d0 net/core/rtnetlink.c:2963 do_setlink+0xcf0/0x41c0 net/core/rtnetlink.c:3165 rtnl_changelink net/core/rtnetlink.c:3776 [inline] __rtnl_newlink net/core/rtnetlink.c:3935 [inline] rtnl_newlink+0x161c/0x1c90 net/core/rtnetlink.c:4072 rtnetlink_rcv_msg+0x7cf/0xb70 net/core/rtnetlink.c:6958 netlink_rcv_skb+0x208/0x470 net/netlink/af_netlink.c:2550 netlink_unicast_kernel net/netlink/af_netlink.c:1318 [inline] netlink_unicast+0x82f/0x9e0 net/netlink/af_netlink.c:1344 netlink_sendmsg+0x805/0xb30 net/netlink/af_netlink.c:1894 sock_sendmsg_nosec net/socket.c:727 [inline] __sock_sendmsg+0x21c/0x270 net/socket.c:742 ____sys_sendmsg+0x505/0x820 net/socket.c:2592 ___sys_sendmsg+0x21f/0x2a0 net/socket.c:2646 __sys_sendmsg+0x164/0x220 net/socket.c:2678 do_syscall_32_irqs_on arch/x86/entry/syscall_32.c:83 [inline] __do_fast_syscall_32+0x1dc/0x560 arch/x86/entry/syscall_32.c:307 do_fast_syscall_32+0x34/0x80 arch/x86/entry/syscall_32.c:332 entry_SYSENTER_compat_after_hwframe+0x84/0x8e </TASK> The buggy address belongs to the variable: lacpdu_mcast_addr+0x0/0x40
CVE-2026-23098 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: netrom: fix double-free in nr_route_frame() In nr_route_frame(), old_skb is immediately freed without checking if nr_neigh->ax25 pointer is NULL. Therefore, if nr_neigh->ax25 is NULL, the caller function will free old_skb again, causing a double-free bug. Therefore, to prevent this, we need to modify it to check whether nr_neigh->ax25 is NULL before freeing old_skb.
CVE-2026-23097 1 Linux 1 Linux Kernel 2026-02-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: migrate: correct lock ordering for hugetlb file folios Syzbot has found a deadlock (analyzed by Lance Yang): 1) Task (5749): Holds folio_lock, then tries to acquire i_mmap_rwsem(read lock). 2) Task (5754): Holds i_mmap_rwsem(write lock), then tries to acquire folio_lock. migrate_pages() -> migrate_hugetlbs() -> unmap_and_move_huge_page() <- Takes folio_lock! -> remove_migration_ptes() -> __rmap_walk_file() -> i_mmap_lock_read() <- Waits for i_mmap_rwsem(read lock)! hugetlbfs_fallocate() -> hugetlbfs_punch_hole() <- Takes i_mmap_rwsem(write lock)! -> hugetlbfs_zero_partial_page() -> filemap_lock_hugetlb_folio() -> filemap_lock_folio() -> __filemap_get_folio <- Waits for folio_lock! The migration path is the one taking locks in the wrong order according to the documentation at the top of mm/rmap.c. So expand the scope of the existing i_mmap_lock to cover the calls to remove_migration_ptes() too. This is (mostly) how it used to be after commit c0d0381ade79. That was removed by 336bf30eb765 for both file & anon hugetlb pages when it should only have been removed for anon hugetlb pages.
CVE-2026-23096 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: uacce: fix cdev handling in the cleanup path When cdev_device_add fails, it internally releases the cdev memory, and if cdev_device_del is then executed, it will cause a hang error. To fix it, we check the return value of cdev_device_add() and clear uacce->cdev to avoid calling cdev_device_del in the uacce_remove.
CVE-2026-23095 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: gue: Fix skb memleak with inner IP protocol 0. syzbot reported skb memleak below. [0] The repro generated a GUE packet with its inner protocol 0. gue_udp_recv() returns -guehdr->proto_ctype for "resubmit" in ip_protocol_deliver_rcu(), but this only works with non-zero protocol number. Let's drop such packets. Note that 0 is a valid number (IPv6 Hop-by-Hop Option). I think it is not practical to encap HOPOPT in GUE, so once someone starts to complain, we could pass down a resubmit flag pointer to distinguish two zeros from the upper layer: * no error * resubmit HOPOPT [0] BUG: memory leak unreferenced object 0xffff888109695a00 (size 240): comm "syz.0.17", pid 6088, jiffies 4294943096 hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 40 c2 10 81 88 ff ff 00 00 00 00 00 00 00 00 .@.............. backtrace (crc a84b336f): kmemleak_alloc_recursive include/linux/kmemleak.h:44 [inline] slab_post_alloc_hook mm/slub.c:4958 [inline] slab_alloc_node mm/slub.c:5263 [inline] kmem_cache_alloc_noprof+0x3b4/0x590 mm/slub.c:5270 __build_skb+0x23/0x60 net/core/skbuff.c:474 build_skb+0x20/0x190 net/core/skbuff.c:490 __tun_build_skb drivers/net/tun.c:1541 [inline] tun_build_skb+0x4a1/0xa40 drivers/net/tun.c:1636 tun_get_user+0xc12/0x2030 drivers/net/tun.c:1770 tun_chr_write_iter+0x71/0x120 drivers/net/tun.c:1999 new_sync_write fs/read_write.c:593 [inline] vfs_write+0x45d/0x710 fs/read_write.c:686 ksys_write+0xa7/0x170 fs/read_write.c:738 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xa4/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f
CVE-2026-23093 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: ksmbd: smbd: fix dma_unmap_sg() nents The dma_unmap_sg() functions should be called with the same nents as the dma_map_sg(), not the value the map function returned.
CVE-2026-23091 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: intel_th: fix device leak on output open() Make sure to drop the reference taken when looking up the th device during output device open() on errors and on close(). Note that a recent commit fixed the leak in a couple of open() error paths but not all of them, and the reference is still leaking on successful open().
CVE-2026-23090 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: slimbus: core: fix device reference leak on report present Slimbus devices can be allocated dynamically upon reception of report-present messages. Make sure to drop the reference taken when looking up already registered devices. Note that this requires taking an extra reference in case the device has not yet been registered and has to be allocated.
CVE-2026-23089 1 Linux 1 Linux Kernel 2026-02-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Fix use-after-free in snd_usb_mixer_free() When snd_usb_create_mixer() fails, snd_usb_mixer_free() frees mixer->id_elems but the controls already added to the card still reference the freed memory. Later when snd_card_register() runs, the OSS mixer layer calls their callbacks and hits a use-after-free read. Call trace: get_ctl_value+0x63f/0x820 sound/usb/mixer.c:411 get_min_max_with_quirks.isra.0+0x240/0x1f40 sound/usb/mixer.c:1241 mixer_ctl_feature_info+0x26b/0x490 sound/usb/mixer.c:1381 snd_mixer_oss_build_test+0x174/0x3a0 sound/core/oss/mixer_oss.c:887 ... snd_card_register+0x4ed/0x6d0 sound/core/init.c:923 usb_audio_probe+0x5ef/0x2a90 sound/usb/card.c:1025 Fix by calling snd_ctl_remove() for all mixer controls before freeing id_elems. We save the next pointer first because snd_ctl_remove() frees the current element.
CVE-2026-23087 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: scsi: xen: scsiback: Fix potential memory leak in scsiback_remove() Memory allocated for struct vscsiblk_info in scsiback_probe() is not freed in scsiback_remove() leading to potential memory leaks on remove, as well as in the scsiback_probe() error paths. Fix that by freeing it in scsiback_remove().
CVE-2026-23086 1 Linux 1 Linux Kernel 2026-02-06 6.2 Medium
In the Linux kernel, the following vulnerability has been resolved: vsock/virtio: cap TX credit to local buffer size The virtio transports derives its TX credit directly from peer_buf_alloc, which is set from the remote endpoint's SO_VM_SOCKETS_BUFFER_SIZE value. On the host side this means that the amount of data we are willing to queue for a connection is scaled by a guest-chosen buffer size, rather than the host's own vsock configuration. A malicious guest can advertise a large buffer and read slowly, causing the host to allocate a correspondingly large amount of sk_buff memory. The same thing would happen in the guest with a malicious host, since virtio transports share the same code base. Introduce a small helper, virtio_transport_tx_buf_size(), that returns min(peer_buf_alloc, buf_alloc), and use it wherever we consume peer_buf_alloc. This ensures the effective TX window is bounded by both the peer's advertised buffer and our own buf_alloc (already clamped to buffer_max_size via SO_VM_SOCKETS_BUFFER_MAX_SIZE), so a remote peer cannot force the other to queue more data than allowed by its own vsock settings. On an unpatched Ubuntu 22.04 host (~64 GiB RAM), running a PoC with 32 guest vsock connections advertising 2 GiB each and reading slowly drove Slab/SUnreclaim from ~0.5 GiB to ~57 GiB; the system only recovered after killing the QEMU process. That said, if QEMU memory is limited with cgroups, the maximum memory used will be limited. With this patch applied: Before: MemFree: ~61.6 GiB Slab: ~142 MiB SUnreclaim: ~117 MiB After 32 high-credit connections: MemFree: ~61.5 GiB Slab: ~178 MiB SUnreclaim: ~152 MiB Only ~35 MiB increase in Slab/SUnreclaim, no host OOM, and the guest remains responsive. Compatibility with non-virtio transports: - VMCI uses the AF_VSOCK buffer knobs to size its queue pairs per socket based on the local vsk->buffer_* values; the remote side cannot enlarge those queues beyond what the local endpoint configured. - Hyper-V's vsock transport uses fixed-size VMBus ring buffers and an MTU bound; there is no peer-controlled credit field comparable to peer_buf_alloc, and the remote endpoint cannot drive in-flight kernel memory above those ring sizes. - The loopback path reuses virtio_transport_common.c, so it naturally follows the same semantics as the virtio transport. This change is limited to virtio_transport_common.c and thus affects virtio-vsock, vhost-vsock, and loopback, bringing them in line with the "remote window intersected with local policy" behaviour that VMCI and Hyper-V already effectively have. [Stefano: small adjustments after changing the previous patch] [Stefano: tweak the commit message]
CVE-2026-23085 1 Linux 1 Linux Kernel 2026-02-06 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: irqchip/gic-v3-its: Avoid truncating memory addresses On 32-bit machines with CONFIG_ARM_LPAE, it is possible for lowmem allocations to be backed by addresses physical memory above the 32-bit address limit, as found while experimenting with larger VMSPLIT configurations. This caused the qemu virt model to crash in the GICv3 driver, which allocates the 'itt' object using GFP_KERNEL. Since all memory below the 4GB physical address limit is in ZONE_DMA in this configuration, kmalloc() defaults to higher addresses for ZONE_NORMAL, and the ITS driver stores the physical address in a 32-bit 'unsigned long' variable. Change the itt_addr variable to the correct phys_addr_t type instead, along with all other variables in this driver that hold a physical address. The gicv5 driver correctly uses u64 variables, while all other irqchip drivers don't call virt_to_phys or similar interfaces. It's expected that other device drivers have similar issues, but fixing this one is sufficient for booting a virtio based guest.
CVE-2026-23084 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: be2net: Fix NULL pointer dereference in be_cmd_get_mac_from_list When the parameter pmac_id_valid argument of be_cmd_get_mac_from_list() is set to false, the driver may request the PMAC_ID from the firmware of the network card, and this function will store that PMAC_ID at the provided address pmac_id. This is the contract of this function. However, there is a location within the driver where both pmac_id_valid == false and pmac_id == NULL are being passed. This could result in dereferencing a NULL pointer. To resolve this issue, it is necessary to pass the address of a stub variable to the function.
CVE-2026-23083 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: fou: Don't allow 0 for FOU_ATTR_IPPROTO. fou_udp_recv() has the same problem mentioned in the previous patch. If FOU_ATTR_IPPROTO is set to 0, skb is not freed by fou_udp_recv() nor "resubmit"-ted in ip_protocol_deliver_rcu(). Let's forbid 0 for FOU_ATTR_IPPROTO.
CVE-2026-23082 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: can: gs_usb: gs_usb_receive_bulk_callback(): unanchor URL on usb_submit_urb() error In commit 7352e1d5932a ("can: gs_usb: gs_usb_receive_bulk_callback(): fix URB memory leak"), the URB was re-anchored before usb_submit_urb() in gs_usb_receive_bulk_callback() to prevent a leak of this URB during cleanup. However, this patch did not take into account that usb_submit_urb() could fail. The URB remains anchored and usb_kill_anchored_urbs(&parent->rx_submitted) in gs_can_close() loops infinitely since the anchor list never becomes empty. To fix the bug, unanchor the URB when an usb_submit_urb() error occurs, also print an info message.
CVE-2026-23080 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: can: mcba_usb: mcba_usb_read_bulk_callback(): fix URB memory leak Fix similar memory leak as in commit 7352e1d5932a ("can: gs_usb: gs_usb_receive_bulk_callback(): fix URB memory leak"). In mcba_usb_probe() -> mcba_usb_start(), the URBs for USB-in transfers are allocated, added to the priv->rx_submitted anchor and submitted. In the complete callback mcba_usb_read_bulk_callback(), the URBs are processed and resubmitted. In mcba_usb_close() -> mcba_urb_unlink() the URBs are freed by calling usb_kill_anchored_urbs(&priv->rx_submitted). However, this does not take into account that the USB framework unanchors the URB before the complete function is called. This means that once an in-URB has been completed, it is no longer anchored and is ultimately not released in usb_kill_anchored_urbs(). Fix the memory leak by anchoring the URB in the mcba_usb_read_bulk_callback()to the priv->rx_submitted anchor.
CVE-2026-23078 1 Linux 1 Linux Kernel 2026-02-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ALSA: scarlett2: Fix buffer overflow in config retrieval The scarlett2_usb_get_config() function has a logic error in the endianness conversion code that can cause buffer overflows when count > 1. The code checks `if (size == 2)` where `size` is the total buffer size in bytes, then loops `count` times treating each element as u16 (2 bytes). This causes the loop to access `count * 2` bytes when the buffer only has `size` bytes allocated. Fix by checking the element size (config_item->size) instead of the total buffer size. This ensures the endianness conversion matches the actual element type.
CVE-2026-23076 1 Linux 1 Linux Kernel 2026-02-06 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ALSA: ctxfi: Fix potential OOB access in audio mixer handling In the audio mixer handling code of ctxfi driver, the conf field is used as a kind of loop index, and it's referred in the index callbacks (amixer_index() and sum_index()). As spotted recently by fuzzers, the current code causes OOB access at those functions. | UBSAN: array-index-out-of-bounds in /build/reproducible-path/linux-6.17.8/sound/pci/ctxfi/ctamixer.c:347:48 | index 8 is out of range for type 'unsigned char [8]' After the analysis, the cause was found to be the lack of the proper (re-)initialization of conj field. This patch addresses those OOB accesses by adding the proper initializations of the loop indices.
CVE-2026-23075 1 Linux 1 Linux Kernel 2026-02-06 N/A
In the Linux kernel, the following vulnerability has been resolved: can: esd_usb: esd_usb_read_bulk_callback(): fix URB memory leak Fix similar memory leak as in commit 7352e1d5932a ("can: gs_usb: gs_usb_receive_bulk_callback(): fix URB memory leak"). In esd_usb_open(), the URBs for USB-in transfers are allocated, added to the dev->rx_submitted anchor and submitted. In the complete callback esd_usb_read_bulk_callback(), the URBs are processed and resubmitted. In esd_usb_close() the URBs are freed by calling usb_kill_anchored_urbs(&dev->rx_submitted). However, this does not take into account that the USB framework unanchors the URB before the complete function is called. This means that once an in-URB has been completed, it is no longer anchored and is ultimately not released in esd_usb_close(). Fix the memory leak by anchoring the URB in the esd_usb_read_bulk_callback() to the dev->rx_submitted anchor.